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Abstract

Apart from providing some new experimental data the paper reviews previous investigations concerning

fluctuating lift acting on a stationary circular cylinder in cross-flow. In particular, effects of Reynolds number in the

nominal case of an infinitely long and nonconfined cylinder in a smooth oncoming flow are discussed. The

Reynolds number range covered is from about Re ¼ 47 to 2� 105; i.e., from the onset of vortex shedding up to the end

of the subcritical regime. At the beginning of the subcritical regime (ReC0:3� 103) a spanwise correlation

length of about 30 cylinder diameters is indicated, the correlation function being based on near-cylinder velocity

fluctuations in outer parts of the separated shear layer. In between Reynolds numbers 1:6� 103 and 20� 103;
an approximate 10-fold increase in the sectional r.m.s. lift coefficient is indicated. This range contains a

fundamental change-over from one flow state to another, starting off at ReC5� 103 and seemingly fully developed
at ReC8� 103:
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flow around cylindrical structures is of relevance for many practical applications, e.g. offshore risers, bridge piers,

periscopes, chimneys, towers, masts, stays, cables, antennae and wires. Knowledge about flow-related unsteady loading

on such structures is crucial for hydro- and aerodynamic design and control (Blevins, 1990).

The present work will focus on the unsteady cross-stream force, the fluctuating lift, acting on a single circular cylinder

in cross-flow. Under nominal conditions and when present, the fluctuating lift is dominated by the actions from the

periodic phenomenon called vortex shedding, the principal source of cross-stream flow-induced vibration and acoustic

emissions (Blake, 1986). The fluctuating lift is due mainly to the fluctuating pressures acting on the surface of the

cylinder (Drescher, 1956; Kwon and Choi, 1996) and, except for the rearmost part of the cylinder, the pressure

fluctuation energy is concentrated to a band around the mean shedding frequency fS (Sonneville, 1976; Norberg, 1986).

The alternate periodic shedding causes the pressure fluctuations at around fS to be essentially out-of-phase between the

upper and lower side of the cylinder (Gerrard, 1961; Ferguson and Parkinson, 1967), i.e., the lift fluctuation energy is

concentrated to a band around fS:
Obviously, the nondimensional shedding frequency, the Strouhal number

St ¼
fS d

U
; ð1Þ
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where d is the cylinder diameter and U is the free-stream velocity, has a special importance for the fluctuating lift. The

appropriate Reynolds number in the assumed incompressible flow is

Re ¼
rUd

m
; ð2Þ

where m is the dynamic viscosity and r is the density of the fluid. The present paper will focus on Reynolds number
effects for the nominal case of an ‘‘infinitely’’ long, rigid, smooth and unconfined cylinder in a uniform oncoming cross-

flow, i.e., flow around a nonvibrating cylinder with negligible effects of surface roughness, with a large enough aspect

ratio and with suitable end conditions (Williamson, 1989) at vanishing or very small solid blockage ratios (wall

confinement) and free-stream turbulence, respectively. These additional factors have all been shown to have an

influence on the flow in general and on the fluctuating lift in particular; e.g., see Farell (1981) and Blevins (1990) and

references cited therein. In this work, the Reynolds number range of principal interest is from ReC47 to 2� 105; i.e.,
from the onset of vortex shedding up to the end of the subcritical regime where there is a rapid decrease in mean drag

coefficient with increasing Re; the so-called drag crisis. For review on fluctuating loads at higher Re; see Farell (1981),
Basu (1985) and Ribeiro (1992).

A compilation of StðReÞ from selected experiments and two-dimensional (2-D) numerical simulations is shown in

Fig. 1. Smoke-wire flow visualizations (Norberg, 1992, 1993a) reveal that the change-over to a low-quality shedding

frequency at ReC5:1� 103 is associated with a transitional change in the three-dimensionality of near-wake vortex
shedding, more specifically with an increasing degree of spanwise waviness of primary vortices and by the (somewhat

later) inception of naturally occurring and random-positioned vortex dislocations; see also Prasad and Williamson

(1997b) and Section 6.3.2.

The amplitudes of fluctuating drag, which are significantly smaller than the fluctuating lift (Bouak and Lemay, 1998;

Posdziech and Grundmann, 2000), are dominated by fluctuating pressures that are in-phase between the upper and

lower side of the cylinder, which in turn are concentrated to very low frequencies and to a band around two times fS

(Sonneville, 1976). Due mainly to vortex shedding, basically as an effect of frictional forces, the cylinder also

experiences a fluctuating torque around its axis. Even for relatively low Reynolds numbers in the laminar shedding

regime (ReC47 to 190), the fluctuating torque appears to be of minor importance (Jordan and Fromm, 1972; Lecointe
and Piquet, 1989).

The r.m.s. (root-mean-square) lift coefficient is defined as

CL0 ¼
L0

dccrU 2=2
; ð3Þ

where L0 is the r.m.s. of lift fluctuations acting on a spanwise segment of length cc (lift is assumed to have a zero time-

mean value). The sectional r.m.s. lift coefficient is the r.m.s. lift coefficient for which the segment length is vanishingly

small (cc=d-0). The sectional lift can thus be seen as lift per unit span. The total lift fluctuations are defined as those

acting on the whole cylinder length exposed to flow (cc ¼ c).
The very first measurement of fluctuating lift on a circular cylinder in a continuous1 fluid stream was carried out by

Drescher (1956), who recorded the sectional wall pressure distribution around the cylinder as a function of time in a

flow of water for Re ¼ 1:1� 105: Since this pioneering work, a vast amount of quantitative data has been reported and
numerous compilation graphs on the variation of lift-related coefficients with Reynolds number have been presented,

e.g. Morkovin (1964), Lienhard (1966), Norberg (1987b), Blevins (1990), Ribeiro (1992), West and Apelt (1993) and

Blackburn and Melbourne (1996). Despite these efforts, there has been no real consensus on CL0 ðReÞ; in particular for
Reo6� 103: As for the collected data on fluctuating forces, especially r.m.s. lift, the range from about Re ¼ 190 (the

approximate onset of intrinsic three-dimensional flow) to ReC6� 103 has been greatly overlooked in the past. This gap
of knowledge reflects some basic difficulties encountered in numerical simulations and related laboratory experiments;

reliable numerical simulations for Re greater than about 190 must be carried out with very fine temporal/spatial

resolutions and in a relatively large three-dimensional domain (Zhang et al., 1995)—laboratory experiments for Re less

than about 6� 103 often require small cross-stream dimensions (Keefe, 1961) with the necessity of rather large spanwise
aspect ratios, c=d (West and Apelt, 1982; Norberg, 1994). Another complicating factor is the instrumentation of the

1In Schwabe (1935) instantaneous pressure distributions around a cylinder in accelerating motion are estimated from the unsteady

Bernoulli equation using velocities as determined from photographs of streamlines in water. At an instant when the cylinder is shedding

vortices, the Reynolds number being 735 and still increasing, Schwabe finds a sectional lift coefficient of 0.447 and a drag coefficient of

1.09. The unsteady force measurements by Bingham et al. (1952) are carried out in a shock tube, covering only a few shedding cycles

after the shedding is initiated by a shock wave, at a single combination of Mach and Reynolds number (Ma ¼ 0:4; Re ¼ 77� 103). The
pressure variations around a section of the cylinder, as deduced from density variations using a Mach–Zehnder interferometer

assuming two-dimensional flow, is reported to build up lift oscillation amplitudes of CLB0:9:
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cylinder; the sectional lift force has to be sensed on a short segment of the cylinder span and the necessary space

required for sufficiently sensitive force and/or pressure transducers sets a lower practical limit to the cross-stream

dimension (Moeller, 1982). A review on measurement (laboratory) methods is provided in Section 3. Appendix B

contains a short review on numerical simulations.

In 1992, the author presented experimental data on the sectional r.m.s. lift coefficient for Reynolds numbers between

720 and 2� 105 (Norberg, 1993a). These coefficients are based on measurements of fluctuating wall pressures at the
shoulders of the cylinder and are calculated using a formula proposed by Ribeiro (1991). Since then, the reliability of

this data has been further consolidated (Apelt and West, 1996). In addition, the above-mentioned gap of information

has been partly filled out by data from numerical three-dimensional (3-D) simulations, e.g. Beaudan and Moin (1994),

Zhang et al. (1995), Kravchenko et al. (1999) and Evangelinos and Karniadakis (1999); see also Table 6.

A compilation on CL0 versus Re is shown in Fig. 2. The experimental data in Fig. 2 only contain sectional or near-

sectional lift coefficients (cc=dp1). The free-stream turbulence levels are all less than Tu ¼ 0:2%; except those of
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Fig. 2. R.m.s. lift coefficient versus Reynolds number:&; Keefe (1962); þ; Leehey and Hanson (1971); m; Sonneville (1973); n;Mohr
(1981); X; Moeller and Leehey (1984); \; Gartshore (1984); B; Szepessy and Bearman (1992); J; West and Apelt (1993); ~;
Sakamoto and Haniu (1994); �; 2-D; half-filled circle, 3-D; K; present; ——, formulas in Appendix A.
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Fig. 1. Strouhal number versus Reynolds number: X; Bearman (1969); Norberg (1987a, 1994): J; laminar shedding; &; wake
transition; n; turbulent shedding; - - -, Barkley and Henderson (1996), 2-D; �; Kwon and Choi (1996), 2-D; þ; Posdziech and
Grundmann (2000), 2-D; ——, formulas in Appendix A. Shaded region corresponds to the bandwidth (�3 dB) of the shedding peak
frequency.
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Table 1

Measurements of fluctuating lift (Reo3� 105; Tup2%)

Study Re=104 bð%Þ c=d cc=d Tuð%Þ EPa Mb Fc CL0
d

Drescher (1956) 11 24 3.1 sec. ? – P1 w E0.8
Fujino et al. (1958) 8–60 ? 7.0 Tot. – – F2 w E0.06–0.3
McGregor and Etkin (1958) 4–12 2.6 28 Sec. 0.3 – P4 a 0.41–0.42

Macovsky (1958) 2–10 8.3 12 2.0 – – F1 w E0.2–0.7
Fung (1960) 19–139 10.5 5.7 1.7 ? – F1 a 0.14–0.27

Humphreys (1960) 3–57 16 6.6 Tot. 1.0 – F2 a E0.2–0.5
Weaver (1961) 8–36 C6 C10 Tot. 0.5 x F2 a E0.1–0.2
Gerrard (1961) 0.4–18 1–15 7–80 Sec. 0.3 – P4 a 0.02–0.87

Keefe (1962) 0.5–9.2 2.6 18e 1.0 0.3 x F1 a 0.27–0.52

Bishop and Hassan (1964) 0.4–11 8.4 9.0e 3.0 ? x F1 w E0.3–0.5
Ferguson and Parkinson (1967) 1.5–4 8.3 9.0 Sec. 0.1 – P4 a 0.22–0.32

Protos et al. (1968) 4.5 5? 11 Tot. ? – F2 w 0.28

Feng (1968) 1.8/2.0 8.3 9.0 Sec. 0.1 – P4 a 0.34/0.36

Leehey and Hanson (1971) 0.4–0.6 Open 97 Sec. 0.04 – F3 a 0.03–0.51

Bublitz (1972) 10–66 Open 8.0 Tot. 0.3e – F2 a 0.02–0.07

Batham (1973) 11/24 5.0 6.6 Sec. 0.5e – P3 a 0.33/0.09

Tanida et al. (1973) 0.006–0.011 4.3 10 3.3 – – F1 o 0.03–0.09

Tanida et al. (1973) 0.3–0.8 4.3 10 3.3 – – F1 w 0.05–0.08

Sonneville (1973) 4.5 5.6 13 Sec. 0.4 – P3 a 0.50

Kacker et al. (1974) 1–30 4.7 8.0 3.6e C0.4 – F1 a 0.17–0.45

Kacker et al. (1974) 2.5–21 8.3 4.5 Sec. C0.4 – P4 a 0.16–0.45

Huthloff (1975) 1–10 Open 6.2 Tot. ? x F2 a 0.25–0.42

Sonneville (1976) 1–6 5.6 13 Tot. 0.4 – F2 a 0.33–0.51

Richter and Naudascher (1976) 2–30 17e 8.6 6.8 0.5 – F1 a 0.04–0.92

Howell and Novak (1979) 7.5 ? 5.8 Tot. ?e – F2 a 0.12

So and Savkar (1981) 3–51 32/16 4/8 3.0 0.5 – F1 w 0.13–1.04

Mohr (1981) 1.5–5.5 9.5 24 Sec. 1.0 – P1 a 0.47–0.56

Moeller (1982) 0.5–5.6 Open 16/19 0.4/0.5 0.3e x F1 a 0.17–0.53

Kiya et al. (1982) 3.2 9.1 11 Sec. 1.4e – P5 a 0.60

Schewe (1983) 2–710 10 10 Tot. 0.4 – F2 a 0.01–0.38

Cheung and Melbourne (1983) 6–60 11/8 3.6/6.7 Tot. 0.4e x F2 a 0.04–0.46

Bychov and Kovalenko (1983) 15–70 15 6.7 1.7 0.04e – F1 a E0.02–0.1
Mulcahy (1983) 2–21 8.3 12e 3.0 2 x F1 w 0.13–0.25

Mulcahy (1984) 2–18 8.3 7.5 0.5 1–2e x F1 w 0.21–0.50

Moeller and Leehey (1984) 0.3–3.9 3.1 26 0.5 0.9 x F1 w 0.07–0.61

Gartshore (1984) 2.2 8.3 10 Sec. 0.1e x P2 a 0.45

Norberg (1986) 2.7 8.3 8.0 Sec. 0.1e x P6 a 0.57

Norberg and Sund!en (1987) 1.8–30 4/11 12/8.8 Sec. 0.06e x P5 a 0.39–0.76

Sin and So (1987) 4.8 18 2.5 0.25 1.5 – F1 a 1.24

Baban et al. (1989) 4.6 22.3 3.0 0.24 2.0 – F1 a 0.82

Kiya and Tamura (1989) C4 Open 6.7 1.0 C0.7 x F1 a 0.38

Taniguchi and Miyakoshi (1990) 9.4 7.1 14 1.2 0.2 – F1 a 0.38

Szepessy and Bearman (1992) 0.9–14 7.7 6.7e Sec. 0.05 x P2 a 0.30–0.53

Norberg (1993a) 0.07–21 1–11 9–105 Sec. 0.06 x P7 a 0.04–0.56

West and Apelt (1993) 1.1–22 4–10 15–35 Sec. 0.2e x P1 a 0.46–0.61

Sakamoto and Haniu (1994) 6.5 8.2 8.2 0.92 0.2 – F1 a 0.46

Blackburn and Melbourne (1996) 12–60 10 4.5 0.1 0.6e x F1 a 0.13–0.96

Watanabe et al. (1996) 11–44 9.8 3.3 Tot. 0.1 – F2 w 0.06–0.51

Khalak and Williamson (1996) 0.2–1.3 10 10 Tot. 0.9 (x) F2 w 0.03–0.30

Bouak and Lemay (1998) 2.4–3.8 3.3 33 1.0 0.2 x F1 a 0.44–0.48

a Indicator whether end plates are used.
bClassification of measurement method, see Section 3.3.
cFluid (a: air, w: water, o: oil).
dE implies that r.m.s.-values have been estimated.
eReference contains a separate study on the influence of this parameter.
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Moeller and Leehey (1984) (Tu ¼ 0:9%) and Mohr (1981) (Tu ¼ 1:0%). A summary of previous laboratory

measurements of both sectional and total lift fluctuations, for Reo3� 105 and Tup2%; is found in Table 1; numerical
simulations (2-D/3-D) are summarized in Appendix B.

The fluctuating lift on a finite cylinder segment is dependent on the degree of three-dimensionality in the shedding

flow close to the cylinder. One measure of this three-dimensionality is the spanwise or axial correlation length scaled

with the diameter, L=d (Section 2.1). The scarceness of data for this quantity is even larger than for the r.m.s. lift

coefficient (Ribeiro, 1992). In fact, up to now, there are no reliable measurements of L=d for Reo2� 103: In an attempt
to bridge this gap of information, a near-wake spanwise correlation study was carried out, extending down to Re ¼ 230

and using hot-wire anemometry (Section 5.2).

Knowledge of spanwise correlation also has a great significance for vortex-induced sound generation (Æ olian tones)

and for the important question of the necessary spanwise computational dimension to capture significant flow-dynamic

features in 3-D numerical simulations. A compilation of L=d versus Re with data from previous investigations

together with present results is shown in Fig. 3. As before, the solid line refers to empirical formulas (Appendix A).

For turbulent shedding conditions (Re > 2602300) and with increasing Re there is a general downward trend in L=d

versus Re: However, there is a local maximum at ReC5� 103; previously noted by Norberg (1987a); see also

Section 5.3, which coincides with the Reynolds number with inception of low-spectral-quality shedding (Fig. 1). The

critical value of ReC5� 103 has been suggested in Norberg (1998) to be due to a spanwise resonance phenomenon in
between vortical structures of mode B (Williamson, 1988b, 1996b) and shear-layer vortices (Bloor, 1964; Wu et al.,

1996).

The main objective of this work is to make an overview of the fluctuating lift acting on a circular cylinder, especially

regarding the influence of Reynolds number and the relation between fluctuating lift and flow features in the near-wake

region.

2. Fluctuating lift

The unsteady force on a segment having a finite spanwise (axial) length cc is the integrated result from a temporal–

spatial loading on that section. The time-averaged flow is assumed to be homogeneous in the spanwise direction, at least

within a significant central spanwise region. This central flow is supposed to be two-dimensional in the mean sense and

also independent of the actual spanwise length c of the cylinder, i.e., independent of the aspect ratio c=d : In laminar
shedding flows this might require some slight end modifications, see Williamson (1996a) for a review. At higher

Reynolds numbers, in transitional and turbulent shedding flows, the necessary minimum aspect ratio varies with

Reynolds number which in turn also, at least to some extent, is dependent on the end conditions (West and Apelt, 1982;

Szepessy and Bearman, 1992; Szepessy, 1993; Norberg, 1994). In Keefe (1962) and Szepessy and Bearman (1992), using
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Fig. 3. Normalized spanwise correlation length versus Reynolds number: &; Leehey and Hanson (1971); ~; Bearman and Wadcock
(1973); �; Kacker et al. (1974);B; Bruun and Davies (1975);J; Sonneville (1976); .; Novak and Tanaka (1977);X;Moeller (1982);
þ; Szepessy (1994); n; Iida et al. (1997); \; d ¼ 3mm; K; d ¼ 6mm; m; d ¼ 40mm; ——, formulas in Appendix A.
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end plates, a decrease in aspect ratio below about c=d ¼ 10 for Re ¼ 104 and below about c=d ¼ 6 for Re ¼ 105

increases the (sectional) r.m.s. lift. From the study of aspect-ratio effects by the author (Norberg, 1994) it is to be noted

that for Reo8� 103; approximately, and when using end plates, the mean pressure loading is reduced with a decrease
in aspect ratio while the opposite is true for higher Re: As mean and fluctuating loads are interconnected (Farell, 1981)
this implies that the effect of aspect ratio on r.m.s. lift changes its behavior at ReC8� 103:

2.1. Sectional lift and axial correlation

In transitional and turbulent shedding flows, the vortex shedding does not occur in phase over the whole span (as it

does or can be made to do in laminar shedding flows). Thus, the correlation or coherence between two sectional

fluctuating forces separated a certain spanwise distance, s; decreases with increasing s: This means that the sectional
r.m.s. lift coefficient is always greater than or equal to the finite section r.m.s. lift coefficient. Assuming spanwise

homogeneity, the ratio, gL; between the r.m.s. lift on a finite length cc and the sectional r.m.s. lift times cc is (Kacker

et al., 1974)

gL ¼
1

cc

2

Z cc

0

ðcc � sÞ RLLðsÞ ds

� �1=2
; ð4Þ

where RLLðsÞ is the correlation coefficient, at zero time delay, between sectional lift forces separated a spanwise distance
s: Since lift is dominated by actions of surface wall pressures, an accurate approximation for RLL is the lift correlation

based on sectional pressure forces, for which measurements are provided in West and Apelt (1997). Measurements of

RLL from sectional total forces by Blackburn and Melbourne (1996) support this approximation. As discussed in

Ribeiro (1992), also see Sonneville (1976) and Moeller (1982), the correlation coefficient, RppðsÞ; between fluctuating
wall pressures along the generator at j ¼ 901 (the mean stagnation line is at j ¼ 01) or between fluctuating velocities

along a generator close to the separated shear layers but not too far from the cylinder, RuuðsÞ; can also provide a
reasonable estimate for RLL; i.e., RLLðsÞERppðsÞERuuðsÞ: Thus, with a known or estimated correlation function RLL;
Eq. (4) can be used to convert the finite section r.m.s. lift coefficient to the sectional r.m.s. lift coefficient.

The one-sided spanwise correlation length L and the centroid of spanwise correlation s; related to the fluctuating lift,
are defined as (Blake, 1986)

L ¼
Z

N

0

RLLðsÞ ds; ð5Þ

s ¼ L�1

Z
N

0

s RLLðsÞ ds: ð6Þ

At large separations and for turbulent shedding conditions RLL is expected to vanish, RLLðs-NÞ ¼ 0: In reality, the
upper limits in Eqs. (5,6) have to be finite and for convenience, neglecting effects of end disturbances, they can be set to

the full length of the cylinder. A neglect of end disturbances implies a sufficiently large aspect ratio, and under such

circumstances and when the segment length cc equals the full length c in Eq. (4) the lift ratio becomes (Keefe, 1961)

#gL ¼ c�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lðc� sÞ

p
: ð7Þ

This is the ratio between the total r.m.s. lift coefficient and its sectional counterpart. Naturally, #gL equals unity in fully

correlated flow (L ¼ c; s ¼ c=2).
The simplest model function for RLL is the exponential decay,

f1 ¼ expð�s=L1Þ: ð8Þ

The centroid for the exponential decay is equal to the correlation length, s1 ¼ L1: The associated lift ratio is (Loiseau
and Szechenyi, 1972)

gL1
¼

ffiffiffi
2

p
a
½expð�aÞ þ a � 1	1=2; ð9Þ

where a ¼ cc=L1: The ratio gL1
equals 0.99 when cc occupies 6% of the correlation length (a ¼ 0:06). Present results

(Section 5.3) indicated that the exponential decay is a reasonable approximation for ReX8� 103; see also ESDU
(1985). As an example, LCL1C5 d prevails at Re ¼ 104 (Fig. 3), i.e., a segment with cc ¼ d (e.g. Keefe, 1961) produces

a r.m.s. lift coefficient that is about 3% lower than its sectional counterpart.

C. Norberg / Journal of Fluids and Structures 17 (2003) 57–9662



Another model function for RLL is

f2 ¼ 1þ
s

CL2

� �n� ��1

: ð10Þ

For each exponent n > 1 in Eq. (10) the constant C is determined from

C ¼
n

p
sin

p
n
: ð11Þ

A finite centroid in the limit s-N requires n > 2: The ratio between the centroid and the correlation length then is

s2=L2 ¼ C
sinðp=nÞ
sinð2p=nÞ

: ð12Þ

In cases when either f1 or f2 works as an approximation the following weighted combination can be tested (0pap1):

RLL ¼ ð1� aÞ f1 þ af2: ð13Þ

Using this weighted model, L and s can be calculated from

L ¼ ð1� aÞL1 þ aL2;s ¼ ½ð1� aÞL2

1 þ aL2s2	=L: ð14; 15Þ

Eq. (13) was used as a model for present results, using RLLERuu as an approximation (Section 5.3).

2.2. Relations to flow-induced sound and vibration

If vortex shedding is assumed to be an essentially sinusoidal process, the sectional lift force may be modelled as a

time-harmonic function, i.e.,

CLðtÞ ¼
ffiffiffi
2

p
CL0 sinð2pfStÞ:

Now assume that the lift force acts on a spring-mounted (natural frequency fn), linearly damped (structural damping

factor z), rigid cylinder (mass m; including added mass) of length c: The cylinder is restrained to move only in the lift
direction and the vibration is assumed to be sinusoidal with an amplitude A; at a frequency equal to fn:With this simple
harmonic model (adopted from Blevins, 1990) the amplitude is largest at resonance, i.e., for fS ¼ fn: The scaled r.m.s.
amplitude then is

A0

d

� �
fS¼fn

¼
#gLCL0

4pSt2dr

;

where #gL is the total lift ratio from Eq. (7) and dr ¼ 4pmz=ðrcd2Þ is the reduced damping. Complications to the above
simple model are that relatively small amplitudes of vibration might increase the spanwise coherence of shedding

vortices (Toebes, 1969; Novak and Tanaka, 1977), the vortex strength (Davies, 1976) and thus also the sectional (and

total) r.m.s. lift (Ferguson and Parkinson, 1967; King, 1977). Increasing vibration amplitudes may also increase the

ability for a synchronization or lock-in of the shedding to the vibration frequency (Bishop and Hassan, 1964).

Calculation procedures including extensions to take into account synchronization and feedback between motion and

forces are presented in ESDU (1985). The limiting amplitude for the above simple analysis to be valid is probably very

small, of the order some percent of the cylinder diameter. Nevertheless, it is obvious that detailed information on

sectional fluctuating lift and its associated spanwise correlation is essential for the prediction of low-amplitude

transverse vortex-induced vibration. It should also be noted that more advanced models for vortex-induced vibration

normally include sectional lift and correlation data for the stationary cylinder, e.g., see Vickery and Basu (1983), Blevins

(1990) and Skop and Balusubramanian (1997).

A theory for the sound emitted from a non-vibrating cylinder with partially correlated vortex shedding is presented in

Phillips (1956); see also Blevins (1990). Under the assumptions of a sinusoidal fluctuating lift, a cylinder length much

shorter than the sound wavelength (c5l) but longer than the centroid (c > s), the r.m.s. sound pressure at a distance
rbl along a line in the lift direction is

p0
s ¼

ffiffiffiffiffi
p2s

q
¼

rU 2

4

c

r

� �
Ma#gLCL0St;

where CL0 is the sectional r.m.s. lift coefficient (Ma is the Mach number which is small, as the flow is assumed to be

incompressible). The lift-generated sound has a dipole character, with dipole axis normal to the stream (Gerrard, 1955;
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Etkin et al., 1956). Following Keefe (1961), a convenient r.m.s. sound pressure coefficient is

Cs0 ¼
2

ffiffiffi
2

p
p0

sr

rU 2Ma
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðc� sÞ

p ¼ CL0St
ffiffiffiffiffiffiffiffiffi
L=d

p
: ð16Þ

As indicated in Section 2.1, the centroid s is of the same order as the correlation length L: In turbulent shedding flows
cbs often prevails, e.g., for telephone wires in natural wind, which means that the radiated power intensity (pp2s ) then

is directly proportional to the cylinder length. Obviously, the combination quantity CL0 St
ffiffiffiffiffiffiffiffiffi
L=d

p
is of special

significance for vortex-induced sound from stationary cylinders (Æ olian tones). Constant Cs0 and cbs imply that the
radiated power is proportional to U 6: The sixth-power formula of Phillips (1956), based on sound measurements of
Holle (1938) and Gerrard (1955) for 360oReo4� 104; suggests Cs0E0:11; assuming StE0:2 and cbs: The underlying
sound pressure data however, show a considerable scatter, of the order 730% (Keefe, 1961). In Leehey and Hanson

(1971) mutually connected measurements of sectional r.m.s. lift, spanwise correlation length, Strouhal number, and

radiated sound intensity are reported over a Reynolds number range from 4000 to 6450. Within this limited range of Re

the associated Cs0 (based on CL0 ; St and L=d) increases from about 0.03 to 0.20. It should be noted, however, that the

wire used in Leehey and Hanson is slightly vibrating, the maximum vibration amplitude of about 3% of the diameter

occurring at the upper end of the Reynolds number range.

In Fig. 4, the variation of Cs0 based on present ‘‘lift’’-data, i.e., CL0 ; St and L=d; is shown together with experimental
sound pressure data (‘‘sound’’-data) of Keefe (1961), Leehey and Hanson (1971) and Iida et al. (1997) (assuming cbs)
and the averaged ‘‘lift’’-data on Cs0 of Leehey and Hanson (1971). Present formulas suggest that Cs0 has maximum of

about 0.55 at Re ¼ 0:3� 103; decreases to a broad minimum (Cs0E0:03) at around Re ¼ 2� 103 and is approximately
constant, Cs0E0:18; for Reynolds numbers 6� 103–105; in fair agreement with Iida et al. (1997). The data of Leehey and
Hanson supports the rapid increase in Cs0 at around Re ¼ 5� 103; their sound pressure measurements also show
significant deviations from a sixth-power law (Phillips, 1956), as also noted in Etkin et al. (1956). Naturally, deviations

from a sixth-power law will occur when Cs0 varies with Re: In addition, at least for limited aspect ratios c=d ; there may
be an influence from the variation of s=c with Re:

3. Review of measurement methods

Various measurement methods for obtaining lift fluctuations are reviewed. Parameters from specific investigations

(Reo3� 105; Tuo2%) are summarized in Table 1.

100 1000 E+4 E+5

Re

0.5

0.4

0.3

0.2

0.1

0.0

C
s′

Fig. 4. R.m.s. sound pressure coefficient versus Reynolds number: dotted line, Phillips (1956), sound; n; Keefe (1961), sound; K;
Leehey and Hanson (1971), lift; X; Leehey and Hanson (1971), sound; J; Iida et al. (1997), sound; ——, present, lift (based on
formulas in Appendix A).
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3.1. Force methods

Methods based on measurement of forces are briefly described; abbreviations F1–F3 refer to the classification in

Table 1.

3.1.1. Force element method (F1)

The most direct way of measuring fluctuating lift is to employ a force-sensitive axial segment. In most cases, e.g.

Keefe (1961), Moeller (1982) and Bouak and Lemay (1998), the ‘‘active’’ load-transmitting part of the cylinder

(of length cc; see Table 1) is connected to a cantilever beam element that is fixed to a base outside the cylinder or to a

base inside one of the ‘‘dummy’’ parts of the cylinder. The force transducer is usually in the form of a strain-gauge

arrangement (e.g. Keefe, 1961) but also piezo-elements (e.g. So and Savkar, 1981) and a capacitive voltage divider

(Moeller, 1982) have been used. For the design of the cantilever beam/beam springs a compromise between high

sensitivity and high natural frequency has to be sought. To minimize effects of vibration the natural frequency is

normally designed to be at least four to five times higher than the mean shedding frequency (So and Savkar, 1981). In

addition, the deflection and non-resonant oscillation amplitudes of the active part should be kept very small, which

requires a high bending stiffness (Fung, 1960). Correction of vibration effects are described in Moeller (1982) and

Blackburn and Melbourne (1997).

The complications of having unsealed gaps in between the active cylinder and the dummy parts are first recognized in

Keefe (1961). The gaps investigated by Keefe are from 0.4% to 1.8% of the cylinder diameter (d) and unless these gaps

are sealed the fluctuating forces are drastically reduced, to a level where CL0 is about 10 times lower than with sealing.

Apparently, unsealed gaps are used in the towing tank study of Tanida et al. (1973), the gap clearance being approx.

0:7% of d : Unphysically low lift fluctuations without sealing are later confirmed in Kacker et al. (1974) and Moeller
(1982). It should be noted that sealing influences the sensitivity of the transducer, statically from the increase in stiffness

and dynamically at high frequencies from the added viscous damping of the sealing material (Keefe, 1961). The sealing

may also transmit vibration effects and increase the sensitivity to changes in temperature (Moeller, 1982). Interestingly,

no sealing is used in the investigation by Bouak and Lemay (1998) but considering the flow development they show

convincingly a negligible influence of the gaps, which in their case are only 0.24% of d: The reported r.m.s. lift
coefficients by Bouak and Lemay using cc=d ¼ 1:0 (same as Keefe), are in excellent agreement with the final results of
Keefe (1962), see Fig. 2.

As pointed out already in the pioneering work of Macovsky (1958) there is a reduction in the fluctuating lift

coefficient when using a segment of finite length. The r.m.s. lift on a segment of length cc can be adjusted to sectional

r.m.s. lift by using Eq. (4), but this provides knowledge of the lift correlation coefficient function RLLðsÞ; for sA½0; cc	:

3.1.2. Total force method (F2)

In a continuous flow situation, the first quantitative results on fluctuating lift acting on the full cylinder length are

reported in Fujino et al. (1958). In most cases using this method the forces on the cylinder are transmitted to one or two

transducers that are mounted outside the flow and fixed to a rigid foundation, e.g., see Humphreys (1960) and

Sonneville (1976). A complication with the method is that there is always a certain amount of flow distortion towards

the cylinder ends (Gerich, 1987), these distortions affects the shedding process which alters the sectional lift distribution

(Keefe, 1961; Szepessy and Bearman, 1992). It can be noted that most investigations employing this method have rather

limited aspect ratios c=d and do not use controlled end conditions such as end plates (Table 1), a procedure that

nowadays is recommended (Stansby, 1974; Fox and West, 1990; Norberg, 1994). End effects are of course subsidiary if

the aspect ratio is sufficiently large, under such conditions the total r.m.s. lift is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðc� sÞ

p
; assuming

partially correlated flow. The conversion to sectional r.m.s. lift is straightforward with known values for L and s;
otherwise the total r.m.s. lift or its associated r.m.s. lift coefficient cannot be compared directly with sectional

counterparts (or vice versa). Conversions between total and sectional r.m.s. lift are presented in Loiseau and Szechenyi

(1972), Sonneville (1976) and West and Apelt (1997).

3.1.3. Electromagnetic method (F3)

This electromagnetic method of estimate sectional r.m.s. lift has so far only been used by Leehey and Hanson (1971).

However, the results using this indirect method are fully comparable with other sectional lift methods, e.g., the force-

element method (F1) with small cc=d ; see Fig. 2. The method is based on a direct comparison between calculated
fluctuating lift causing tiny resonant vibration amplitudes of a taut wire exposed to a uniform flowing air and the

electromagnetic force required to excite the same wire to the same amplitude and frequency in still air. The method

requires a sufficiently small damping at resonance and that higher harmonics and broad-banded components of the

excitation can be neglected.
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3.1.4. Momentum method

In Noca et al. (1997) a method of measuring forces from a knowledge of the velocity field (and its derivatives) in a

finite and arbitrarily chosen region enclosing an flow-immersed body is presented; see also Unal et al. (1997) and Noca

et al. (1999). The method is suited in particular to results from Digital Particle Image Velocimetry (DPIV), for which

time sequences of two-dimensional slices of the velocity field can be obtained but not the pressure field, the pressure

being the quantity that has been cleverly eliminated by the authors from the original control-volume formulation of the

momentum equation.

In Noca et al. (1997) the method is used for calculating fluctuating lift on a stationary circular cylinder for

Re ¼ 19� 103; with the underlying velocity field taken at mid-span using DPIV, in a water tunnel. The method is tested
against the total force method (F2), using a force balance (c=dE4:5). However, the comparison can only be qualitative
since method F2 gives out the spanwise-averaged lift and the lift from the momentum method is based on the velocity

field at mid-span, using a two-dimensional formulation. Moreover, the calculated lift cannot be exactly the sectional lift

since the flow is fully 3-D at this Reynolds number. It is not clear how much the discarded terms due to the missing

spanwise velocity component contributes to the calculated lift.

The method appears promising, especially for low-Reynolds number flows where often traditional methods cannot be

applied for practical reasons. However, in flows with intrinsic three-dimensional ingredients of relevance for fluctuating

lift, given the difficulties in measuring velocity fields other than in single 2-D slices, it may be a fundamental problem for

the method’s applicability concerning the true sectional lift or the lift on a finite segment length of the cylinder. More

comparison tests and validation experiments are needed.

3.2. Pressure methods

Measurement methods based on fluctuating wall pressures are briefly described; abbreviations P1–P7 refer to the

classification in Table 1.

Pressure methods rely on the assumption that wall friction have a negligible contribution to the fluctuating lift. Two-

dimensional simulations, e.g. Posdziech and Grundmann (2000), suggest that the ratio between pressure r.m.s. lift and

total r.m.s. lift varies approximately as r ¼ 1� 1:2=
ffiffiffiffiffiffi
Re

p
; the ratio being 0.92 at Re ¼ 200:

Pressure methods do not, as force methods, rely on tiny vibrations of parts or of the full length of the cylinder. Since

the cylinder surface is curved, a standard technique for all pressure methods is to employ pressure transducers in a

pinhole arrangement (Norberg, 1986), for which the Helmholtz resonance associated with the transducer/pipe cavity

puts a limit to the frequency response (Batham, 1973).

3.2.1. Ring of pressure taps (P1)

This method is based on the simultaneous measurement of time-dependent wall pressures at multiple positions

around the circumference of the cylinder. Neglecting wall friction, the instantaneous sectional lift coefficient is

CLðtÞ ¼
1

2

Z 2p

0

Cpðj; tÞ sin j dj; ð17Þ

where Cpðj; tÞ is the instantaneous pressure coefficient at an angle j from the stagnation line. All investigations

employing this method utilize distributed pressure taps to obtain wall pressures, and by using pressure transducers and

summing amplifiers the integral can then be approximated as a sum of weighted terms with an output signal directly

monitoring the lift (e.g., Schmidt, 1965) or simply, as in the case of Drescher (1956), the lift can extracted from

instantaneous pressure distributions around the circumference. In the pioneering study of Drescher (1956) a total of 12

pressure taps are equally distributed around the cylinder circumference. In subsequent studies, the number of pressure

taps varies from 12 (e.g., Mohr, 1981) to 24 (Tunstall, 1970). In some cases, e.g. van Nunen et al. (1972), the pressure

taps are distributed in an optimized fashion for approximation of the summed output lift signal. It is mentioned in West

and Apelt (1997) that tests had demonstrated the possibility of using only 10 distributed taps/transducers.

3.2.2. Segmented pneumatic averages (P2)

The technique of using manifolds to average pressures from a number of wall tappings was first proposed and used by

Surry and Stathopoulos (1977/78). For obtaining the instantaneous sectional pressure lift force, two opposing half-

cylinder segments should have wall pressure taps spaced equally across a diametrical line aligned with the oncoming

flow and with pressure taps from each segment connected through short tubing to a manifold. The two spatially

averaged pressures can be connected either directly to either side of a single differential pressure transducer diaphragm

(Gartshore, 1984) or each manifold output can be connected to a pressure transducer, the pressure lift signal then being

obtained as the difference between these two pressure outputs (Szepessy and Bearman, 1993). An instantaneous
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sectional pressure drag signal can be obtained by rotating the cylinder 901: Internal flow between tappings on each

segment is a source of potential error. Also, for fast response the tubing between pressure taps and the pressure

transducer has to be short with a small internal cavity volume in the manifold. The r.m.s. lift coefficients using this

technique (Gartshore, 1984; Szepessy and Bearman, 1992) show good agreement with investigations using short force

elements (Keefe, 1962) and a full ring of pressure taps (West and Apelt, 1993); see also Fig. 2 and Apelt and West

(1996).

3.2.3. Cross-correlation method (P3)

This method relies on the simultaneous measurement of fluctuating wall pressures at two arbitrary and variable

positions around the circumference of the cylinder. By using the definition of instantaneous sectional lift, Eq. (17), the

sectional r.m.s. lift coefficient can be obtained from (Surry, 1969)

CL0 ¼
1

2

Z 2p

0

Z 2p

0

Rppðj1;j2Þ Cp0 ðj1Þ Cp0 ðj2Þ sinj1 sinj2 dj1 dj2

� �1=2
; ð18Þ

where Rppðj1;j2Þ is the auto-correlation coefficient, at zero spanwise separation, between wall pressures at

circumferential angles ðj1; j2); Cp0 is the r.m.s. pressure coefficient, Cp0 ¼ p0=ðrU 2=2Þ; where p0 is the r.m.s. of wall

pressure fluctuations. In practice, the two-point measurements can be taken in a way that minimizes the number of

unique angle pairs for a certain angular increment (Dj). Assuming symmetry, the minimum number of such pairs is

N2 þ N þ 1; where N ¼ p=Dj (Surry, 1969).
For realization of arbitrary angle pairs, the cylinder has to be manufactured in two parts which can be individually

rotated. From the practical side, this means that the two pressure taps cannot be located exactly at the same cross-

section.

3.2.4. Distribution of r.m.s. pressures, one transducer (P4)

This method, which is approximate but conservative, relies on the assumption that the lift-related pressure

fluctuations on the upper and lower side of the cylinder (j > 0 and o0) are completely out-of-phase. If it is further
assumed that these pressure fluctuations are dominated by fluctuation energy at around the mean shedding frequency,

the following should be a reasonable approximation for the sectional r.m.s. lift coefficient (McGregor and Etkin, 1958):

CL0E
Z p

0

Cp0 ðj; fSÞ sinj dj; ð19Þ

where Cp0 ðj; fSÞ is the r.m.s. pressure coefficient, within a frequency band around the mean shedding frequency fS; at
angle j:
As evident from Eq. (19) the fluctuation energy that really contributes to the fluctuating lift stems from the most

upper and lower parts of the cylinder, a region where also the total pressure fluctuation energy is concentrated (Gerrard,

1961; Norberg, 1986). The band-pass filtered r.m.s. pressure coefficient in Eq. (19) then can be replaced by the total

r.m.s. pressure coefficient. This resulting CL0 can be regarded as an upper bound for the sectional (pressure) lift

coefficient, i.e.,

#CL0 ¼
Z p

0

Cp0 ðjÞ sinj djXCL0 : ð20Þ

Eq. (19) was originally introduced and employed by McGregor (1957), the slight modification in Eq. (20) is due to

Gerrard (1961).

3.2.5. Fluctuating pressures at j ¼ 7901 (P5)

The following approximation is provided and used in Kiya et al. (1982):

CL0E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� RppÞ

p
Cp0 ; 901; ð21Þ

where Rpp ¼ Rppð901;�901Þ is the cross correlation coefficient between wall pressure fluctuations at opposing shoulder
positions of the cylinder and Cp0 ; 901 ¼ Cp0 ð7901Þ: The underlying assumption for Eq. (21) is that the fluctuating lift is
dependent primarily on the pressure fluctuations in the vicinity of j ¼ 7901 (McGregor, 1957; Bruun and Davies,
1975). Eq. (21) is recovered directly if the instantaneous pressure difference between angles 7901 times the cylinder
diameter is treated as a direct measure of the sectional lift. The major advantage compared to the full cross-correlation

method is that the two pressure taps can be mounted permanently (opposing each other) without any need for a

rotation of individual cylinder sections. However, based on the full comparison with other pressure methods, it appears

that the formula gives out an overestimation of the true r.m.s. (pressure) lift coefficient (Section 5.1).
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3.2.6. Fluctuating pressures at opposing angles 7j (P6)

This method of estimating the sectional r.m.s. lift coefficient relies on the simultaneous measurement of fluctuating

pressures at the opposing angles7j: Phase, coherence and amplitude information for fluctuating pressures at opposing
angles and within a limited number of frequency bands are summed up to give out the sectional r.m.s. lift. The same

methodology can be used for the sectional r.m.s. drag and some results on both r.m.s. lift and drag are provided in

Norberg (1986). The method was originally developed as a quicker alternative to the time-consuming method P2, the

cross-correlation method. The number of angle pairs that has to be tested is only 2N � 1; where again, N ¼ p=Dj:

3.2.7. Distribution of r.m.s. pressures, two transducers (P7)

As validated in Ribeiro (1991) the sectional r.m.s. lift coefficient can be approximated from

CL0 ¼
1

2
ð1� RBSÞ #CL0 : ð22Þ

RBS is the correlation coefficient of pressure forces acting on both sides of the cylinder (with respect to the wake center

line). The factor in front of the upper bound value [ #CL0 ; Eq. (19)] takes into account the lack of a perfect anti-correlation
between the upper and lower side. As motivated in Ribeiro (1992) and validated down to about Re ¼ 2� 104; RBS can

be estimated as the correlation coefficient between the shoulders of the cylinder, i.e., RBS ¼ Rpp (Fig. 7). Further

validation, down to about Re ¼ 2:7� 103; can be found when comparing present results with previous results using the
force element method (F1), e.g. those of Keefe (1962) and Moeller (1982), see Fig. 2.

4. Experimental details

All measurements were carried out in the low-turbulence wind tunnel L2 at department of Thermo- and Fluid

Dynamics, Chalmers University of Technology, Gothenburg. The free-stream turbulence intensity is less than 0:06%;
while the acoustic noise level is less than 0.6% of the dynamic pressure (Norberg, 1994). The cylinders were mounted

horizontally between vertical supporting plates, positioned approximately at the center of the 2:9 m long working

section (height H ¼ 1:25 m; width 1:80 m).
Corrections for solid blockage, using the correction scheme of Maskell (1963), with extension to r.m.s. lift due to

Vickery (1966); see also Sohankar et al. (2000), were only applied for blockage parameters b > 1:5% (dX10mm), see

Table 2. Corrections for r.m.s. lift were of the same magnitude as the blockage parameter. To match overlapping results

for the d ¼ 40mm cylinder the level of Rpp for the d ¼ 120 mm cylinder (Fig. 7) was adjusted downwards with a

dividing factor of 1:13: This mismatch for Rpp is believed to be due mostly to the limited aspect ratio for the largest

diameter, c=d ¼ 8:8 (Table 2). As implied from studies on the effects of aspect ratio by Fox and West (1990) and

Szepessy (1993), at these Reynolds numbers (ReB8� 104), a reduction in aspect ratio from sufficiently large values will,
eventually, at around an aspect ratio of 10–15, increase the sectional r.m.s. lift. It is suggested that such an increase in

fluctuating lift is mostly due to an increase in anti-correlation between the upper and lower sides of the cylinder.

The 3mm (d ¼ 3:0070:005 mm) cylinder was a smoothly machined steel rod. For this diameter, only velocity
correlation results are provided (Section 5.3). The miniature hot wires were oriented parallel to the cylinder axis. One

hot-wire probe could, along the cylinder axis, be traversed sideways in relation to the other (to an accuracy of 0:05 mm
and up to a maximum separation of 100 mm) while both probes in conjunction could be moved in all directions

Table 2

Parameters for cylinders of different diameter (d)

dðmmÞ 3 4 6 10 40 120

c=d 256 105 80 48 26 8.8

dEP=d 10 10 a a b b

d=H 0.2% 0.3% 0.5% 0.8% 3.2% 9.6%

b 1.3% 1.3% 1.4% 1.6% 3.7% 11%

s=d – 0.23 – – 0.10 0.10

dh=d – 5% – 4% 2% 0.5%

Cylinder length, c; end plate diameter, dEP; working section height, H; solid blockage, b; spanwise distance between pressure taps, s;
pressure hole diameter, dh:
aSupporting plates (streamwise length 160 mm) acted as end plates.
bEnd plates of ‘‘Stansby design’’ (Stansby, 1974).
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(accuracy approx. 0:1 mm). To within 70:2mm in the streamwise direction and to within 70:1 mm crosswise the two

hot wires were positioned at the same relative position in a cross-sectional plane. A similar experimental setup was used

for the correlation measurements with the 6 mm cylinder, see Norberg (1987a).

The 4 mm (d ¼ 3:9870:01 mm) cylinder contained two small-scale pressure transducers (outer diameter 2:3 mm) that
were mounted opposing each other in a one-piece cylindrical section made of aluminum (length 33 mm). The cavities in

front of the transducers were connected to the outer surface by drilling two diametrically opposing holes of diameter

dh ¼ 0:2 mm at a spanwise distance of s ¼ 0:9 mm: By threading of this central section with two 5mm long extensions

on each side an efficient tightening of the pinhole housings was achieved. Finally, the full cylinder length was realized by

adding two 240 mm long dummy stainless tubes screwed on to each side of the instrumented section. The cannulas for

back-venting the transducers were extended to outside the wind tunnel by hypodermic tubes. The frequency responses

could both be described as a second-order system with a natural frequency of fn ¼ 4:9 kHz and a damping factor of
zC0:15: The individual systems could be tuned to a flat response (71 dB) from DC to about 5 kHz: Based on the
maximum amplification (gain=500) of the two-channel bridge amplifier the sensitivities were 13.4 and 14:1 mV/Pa,
respectively (accuracy 72%). The resulting noise level at 1Hz to 3 kHz was about 0:1 Pa:
The 10 mm (d ¼ 10:0 mm) hollow cylinder contained, at mid-span, a quarter-inch microphone with a sensitivity of

ð4:170:06ÞmV/Pa. The pinhole arrangement could be described as a second-order system (fn ¼ 1:7 kHz; z ¼ 0:3). The
resulting noise level was negligible (less than 0:01 Pa). Instrumentation and pinhole system for the 40 mm cylinder

(d ¼ 40:4 mm) were similar to an earlier investigation (Norberg, 1986). Instrumental details for the 120 mm cylinder can
be found in Norberg and Sund!en (1987).

The overall uncertainty for r.m.s. pressure coefficients was estimated to be 72:5% (at constant odds 20:1). The

corresponding uncertainty for Reynolds numbers was 70:5% (70:8% at velocities less than 4m/s).

Based on repeated measurements and error analysis of Bendat and Piersol (1984), the uncertainty in the reported

correlation coefficients was estimated to be 70:02 (70:01 for absolute correlation levels higher than 0.8). The overall
uncertainty for r.m.s. lift coefficients, Eq. (22), was74%: Spanwise correlation lengths had a typical overall uncertainty
of about 75%:

5. Results and discussion

5.1. Fluctuating wall pressures and sectional lift

The sectional r.m.s. lift on the cylinder was obtained using pressure method P7 (Section 3.2.7). As a measure for the

correlation between sectional lift-related forces on the upper and lower side of the cylinder (j > 0 and o0) the
correlation coefficient Rpp between fluctuating wall pressures at j ¼ 7901 was used, i.e.,

CL0 ¼
1

2
ð1� RppÞ

Z p

0

Cp0 ðjÞ sinj dj: ð23Þ

R.m.s. pressure distributions Cp0 ðjÞ at 10 different Re are depicted in Fig. 5; RppðReÞ is shown in Fig. 7. Results for
Cp0 ð901Þ and CL0 ðReÞ are presented in Figs. 6 and 8. A summary of cases is provided in Table 3.

Distributions of the r.m.s. pressure coefficient around the cylinder surface reflect the sectional fluctuating pressure

loading and as is evident from Fig. 5 an exceptional low loading of fluctuating pressure forces is indicated at around

Re ¼ 1:5� 103: Extensive measurements of r.m.s. pressures at j ¼ 901 (Fig. 6) and j ¼ 1801 (not shown) revealed that

the minimum loading occurred at Re ¼ ð1:51� 1:62Þ � 103; where also a minimum was reached for the absolute value

of Rpp (Fig. 7). Consequently, there appears to be a local minimum in the sectional r.m.s. lift coefficient at ReC1:6�
103; the indicated minimum level was CL0C0:045 (Table 3). At around this particular Re there is also a local minimum
in the mean pressure loading, with a mean pressure drag coefficient of about 0:9 (Norberg, 1993a) and a base suction
(�Cpb) of 0:8 (Norberg, 1994).
Being indicative of the overall low levels of acoustic noise and free-stream turbulence, all distributions in Fig. 5

exhibited a very low level of Cp0 at the frontal stagnation line (j ¼ 01). The Cp0 ð01Þ was about 0:6%; except for the
distribution at the lowest velocity for the smallest diameter (d ¼ 4 mm; U ¼ 2:7 m/s, Re ¼ 0:72� 103) where transducer
noise increased this minimum level to about 1.5%. From this low stagnation value there was a steady increase in Cp0 up

to a local maximum at js (Table 3) associated with flow separation. The maximum in Cp0 occurred slightly upstream of

the point where there is a maximum in the mean pressure gradient (Norberg, 1993a). At Re ¼ 0:72� 103 the angular
distance between these two points was about 21; whereas at Re ¼ 2:1� 105 the points were only separated by about
0:51: Interestingly, the gradual decrease in js with increasing Re was interrupted in between Re ¼ 5� 103 and 8� 103:
In between Re ¼ 7:2� 103 and 8:1� 103 there was instead a slight (about 21) downstream movement of js; the
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indicated mean separation point. At around these Reynolds numbers there is also a build-up of a secondary maximum

in Cp0 at jE1551; which for Re > 8� 103 and all the way up to the drag crisis is a characteristic feature of the r.m.s.
pressure distributions (Fig. 5); see also Norberg and Sund!en (1987) and West and Apelt (1993). As discussed in Norberg

and Sund!en (1987) the reason for this secondary maximum to show up is the occurrence of relatively unusual but

powerful suction peaks; see also Norberg (1986).

Results for Cp0 ð901Þ; extending down to Re ¼ 0:57� 103; are shown in Fig. 6. There is a dramatic variation with Re;
the highest value (at ReC2� 105) being about 7 times higher than the lowest (at ReC1:6� 103). The largest variations
occurred between Re ¼ 5� 103 and 7� 103 and within this short interval there was a doubling in Cp0 ð901Þ; from 0.11 to

0.22. In Gerrard (1961) even larger variations of Cp0 ð901Þ are presented, see Fig. 6. Presumably, the pressure gauge
design in Gerrard (1961) with a very large pressure-sensitive area in combination with spanwise flow inhomogeneities

and effects of blockage for high Reynolds numbers are responsible for most of the differences as compared with present
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Fig. 6. R.m.s. pressure coefficient at j ¼ 901: broken line, Gerrard (1961); \; c=d ¼ 13; b ¼ 6% (Sonneville, 1973); �; c=d ¼ 10;
b ¼ 13% (Bruun and Davies, 1975); ~; c=d ¼ 11; b ¼ 3% (Novak and Tanaka, 1977); þ; c=d ¼ 8; b ¼ 8% (Norberg, 1986); X;
c=d ¼ 9; b ¼ C (Norberg and Sund!en, 1987); ——, c=d ¼ 7; b ¼ 0 (Kiya and Tamura 1989);B; c=d ¼ 15; b ¼ 10% (West and Apelt,

1993); K; c=d ¼ 20; b ¼ 6% (Lee and Basu, 1997); present: J; c=d ¼ 105; b ¼ 1%; &; c=d ¼ 48; b ¼ C; n; c=d ¼ 28; b ¼ C

(‘‘b ¼ C’’ means that results have been corrected for blockage).
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Fig. 7. Correlation coefficient of fluctuating pressures at j ¼ 7901: \; Bruun and Davies (1975); K; Novak and Tanaka (1977); þ
Kiya et al. (1982); �; Taniguchi and Miyakoshi (1990); present: J; d ¼ 4mm; n; d ¼ 40 mm; X; d ¼ 120mm:
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Fig. 8. Sectional r.m.s. lift coefficient versus Re: K; present; n; approximation 1:5� Cp0 ð901Þ (present data); dot-broken line, from
vortex street model of Chen (1971a,b) using mean pressure drag coefficients and Strouhal numbers from Norberg (1993a, 1994);

broken line, formula given by Engineering Science Data Unit (ESDU, 1985); solid line, present formulas (Appendix A).

Table 3

Summary of results from r.m.s. pressure distributions, Cp0 ðjÞ

Re=104 dðmmÞ St jS (deg)
a Cp0 ðjsÞ Cp0 ð901Þ Cp0 ð1801Þ #CL0 �Rpp CL0

0.072 4 0.210 88 0.10 0.10 0.05 0.15 0.45 0.11

0.15 4 0.212 85 0.05 0.05 0.03 0.08 0.12 0.045

0.44 4 0.210 82 0.08 0.07 0.04 0.12 0.63 0.10

0.50 10 0.209 81 0.11 0.10 0.06 0.18 0.68 0.15

0.61 10 0.207 79 0.21 0.19 0.12 0.31 0.73 0.27

0.72 10 0.204 78 0.26 0.23 0.17 0.38 0.77 0.34

0.81 10 0.203 80 0.27 0.25 0.20 0.41 0.88 0.38

2.03 40 0.194 78 0.35 0.30 0.24 0.50 0.86 0.47

6.10 40 0.187 77 0.38 0.33 0.31 0.56 0.78 0.50

21.4 120 0.189 76 0.43 0.35 0.30 0.60 0.74 0.52

ajs is angle for maximum Cp0 :
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and other results (Fig. 6). When considering the differences in blockage, aspect ratio, end conditions and level of free-

stream turbulence there is, except for Gerrard (1961), a reasonable agreement between present and previous results. For

instance, the results of West and Apelt (1993) in Fig. 6 are taken with a blockage parameter of b ¼ 9:5%; a free-stream
turbulence intensity level of Tu ¼ 0:2% and an aspect ratio of c=d ¼ 15 using end plates. Here it can be inferred that the

combination of higher blockage (Vickery, 1966; Richter and Naudascher, 1976) and free stream turbulence (Norberg,

1987a) is the cause for the slightly higher levels. Note that the present results have been corrected for blockage effects,

but only for b > 1:5%:
In Fig. 2 it should be mentioned that also the results of Mohr (1981) have been corrected for blockage effects (by the

author). Due to lack of mutually connected results of r.m.s. lift, mean pressure drag and base suction, other

experimental results in Fig. 2 are left uncorrected for blockage (bp10%; see Table 1). Experimental data included in
Fig. 2 has been considered reliable in terms of a sufficiently large cylinder aspect ratio (c=d) in combination with

suitable end conditions (Norberg, 1994). The rather high CL0 -levels of Moeller and Leehey (1984) for ReX10
4 (Fig. 2)

are not believed to be due to effects of blockage nor aspect ratio (b ¼ 3:1%; c=d ¼ 26). Here the main reason for the

elevated levels is due probably to effects of free-stream turbulence intensity, which in their case (water measurements) is

Tu ¼ 0:9%: As shown in Norberg and Sund!en (1987), for 104oReo105; an increase in turbulence intensity from 0:1%
to 1:4% gives an approximate 15% increase in the sectional r.m.s. lift. For ReX104; the CL0 -results of Keefe (1962), see

Fig. 2, are slightly lower than the present. Here the main reason is believed to be the finite spanwise extent of the force

element (cc=d ¼ 1), which in relation to the spanwise correlation length, at these Re; show a decrease with

increasing Re; see Fig. 3. As outlined in Section 2.1, also see West and Apelt (1997), the reduction in CL0 due to this

averaging effect can be corrected. If doing this, using the proposed function L=d versus Re (Appendix A), there is

actually a very good agreement with the present data. However, in this study, all results for r.m.s. lift are left

uncorrected for this effect.

As seen in Fig. 8, especially for Re > 5� 103; the sectional r.m.s. lift coefficient can be roughly approximated as
CL0E1:5� Cp0 ð901Þ: From this interrelation it can be inferred that for the present turbulence intensity of Tu ¼ 0:06%
the rapid drop in CL0 when entering the critical regime occurred at ReC2:3� 105: As seen in Fig. 5 the Cp0 -distribution

for Re ¼ 2:1� 105 exhibits a peak behavior at around j ¼ 1051: This peak is associated with transition to turbulence in
the separated shear layers, which at these Re occurs very soon after separation (Smith et al., 1972). As evident, the

subsequent development of flow reattachment results in a rapid fall in CL0 (Norberg and Sund!en, 1987).

The CL0 -formula suggested by Kiya et al. (1982), Eq. (21), as used also in Norberg and Sund!en (1987), does not fit

very well with existing experimental sectional data (Fig. 2). For Re > 5� 103; the ratio between r.m.s. lift calculated
from the formula given by Kiya et al. (1982) and Eq. (23) is 1:2870:04: This implies that the lift coefficients presented
by Norberg and Sund!en (1987) are largely overestimated. If, however, the coefficients in Norberg and Sund!en (1987) are

reduced by a factor 1.28, a much better agreement with present results is found.

For 6� 103oReo3� 105; the formula for CL0 given by ESDU (1985) (ReX103; see Fig. 8) appears to underestimate
the sectional r.m.s. lift, also see Fig. 2, whereas at lower Re; based on the results of Keefe (1962), Leehey and Hanson
(1971), Moeller and Leehey (1984) and the present results, the opposite seems likely. Interestingly, the value of CL0C0:1
at Re ¼ 103 as indicated from ESDU (1985) appears not to have been based on the above mentioned two studies prior

to 1985, but rather on the results of Tanida et al. (1973), presumably with some guidance towards lower Re from the

results of Keefe (1962) and Bishop and Hassan (1964). However, the results of Tanida et al. (1973) cannot be regarded

as fully reliable since they have, in their towing tank experiments, an aspect ratio of only about 10 (one end is

penetrating the liquid surface, the other is close to the bottom of the tank, no end plates). In particular and due mainly

to this limited aspect ratio (Norberg, 1994) their results within the laminar shedding regime (Re ¼ 60–110), using oil as

the working medium, should be treated with great caution. Apart from the oil data of Tanida et al. (1973), and prior to

the results of the author (Norberg, 1993a), the lowest attained Re on fluctuating lift is due to Moeller and Leehey (1984)

who for their lowest Re of 2:7� 103 report CL0 ¼ 0:07; in agreement with present results, see Fig. 2.
Also shown in Fig. 8 is a curve for CL0 ðReÞ as deduced from the procedure of Chen (1971a, b), based on a far-field

control volume analysis of the vortex street. The procedure needs as input only the Strouhal number and the mean

pressure drag coefficient, as in this case were taken (as smoothed data) from the author’s previous measurements

(Norberg, 1993a, 1994). However, the analysis of Chen is two-dimensional to its nature, assumes harmonic lift

variations and completely ignores flow developments close to the cylinder. Despite the severe restrictions on the analysis

of Chen, the indicated correct level of CL0C0:5 at the end of the subcritical regime (ReC2� 105) seems to have been
captured. However, the indicated very rapid drop in CL0 towards ReC1:6� 103 is not captured. For turbulent shedding
conditions, the author does not think that a control volume analysis based on far-field conditions, with empirical input

of only mean drag and shedding frequency, will ever fully capture the true velocity variation of fluctuating forces on a

bluff body. To be reliable, such a model has to take into account the subtle and strongly multi-dimensional flow

variations close to the body, which in fact are responsible for the load fluctuations. In closure and relating to the vortex
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street analysis of Chen (1971a, b), the author believes that the close agreement with experiments at ReB105 is
fortuitous.

5.2. Fluctuating lift and wall pressures at j ¼ 7901

The indicated very large variation in fluctuating pressure loading for Reynolds numbers in between 1:6� 103 and 104;
in particular at around Re ¼ 5� 103; needs further elucidation. As pointed out in several previous publications by the
author (Norberg, 1987a,b, 1989, 1992, 1993a,b, 1994, 1998), these dramatic variations are believed to be due to a

fundamental change in the near-wake shedding process, related to intrinsic three-dimensional effects. Some further

signatures of this transitional behavior can be traced from the coupling between fluctuating pressures between opposing

angles j ¼ 7901:
Shown in Fig. 9 are fluctuating pressures at j7901 (at mid-span) and their instantaneous difference, scaled with

corresponding r.m.s.-values (Re ¼ 3:1� 103 and 20� 103; respectively). This pressure difference can be seen as a rough
estimate of the instantaneous sectional pressure lift. As is evident from Fig. 9, the individual pressure variations at
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Fig. 9. Fluctuating pressures at j ¼ 7901 and their difference mimicing the behavior of sectional lift. (a) Re ¼ 3:1� 103; d ¼ 4mm;
(b) Re ¼ 2:0� 104; d ¼ 40mm: Upper: j ¼ þ901; middle: j ¼ �901; lower: difference pð901Þ � pð�901Þ: Signals are scaled with
corresponding r.m.s. values and cover a time interval of 100 mean shedding periods (T ¼ f �1

S ). Probability density functions are shown

on right (dotted: Gaussian).
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j ¼ 7901 display a highly irregular behavior, with negatively skewed probability density functions (shown on right).
For both Reynolds numbers the pressure fluctuation energy is dominated by frequencies at and around the mean

shedding frequency. However, the pressure signals, for both Re; also have a significant contribution from low

frequencies. From Fig. 10 the instantaneous pressure difference (mimicing sectional lift) displays a highly coherent out-

of-phase behavior at around the mean shedding frequency (fS). There is also, for low frequencies, lower than about

0:1� fS; a high coherence in between these two locations (coherence factor of about 0.9). However, as shown in
Fig. 10(b), the phase difference is close to zero which means that these low-frequency components do not contribute to

the fluctuating lift (as do not the pressure fluctuation energy at around two times the mean shedding frequency). The

appearance of the spectra from the instantaneous pressure difference (not shown) was in general accordance with true

lift spectra as shown, e.g., in Keefe (1961), Sonneville (1976) and Moeller (1982) (ReB5� 104). One notable difference,
however, was the significant sharpening of the shedding peak (centered around fS) when coming to Reynolds numbers

less than about 5� 103; in agreement with previous findings by the author, e.g., Norberg (1993a). The same effect can
be traced also from the coherence and phase functions, see Fig. 10.

There was a much higher regularity in the envelop amplitude of indicated fluctuating lift at low Reynolds numbers,

lower than about Re ¼ 6� 103; as compared with higher Re: As seen in Fig. 9, the lift-related signal for Re ¼ 3:1� 103

has a fairly regular amplitude variation with no apparent excursions down to very low levels, close to zero, as was found

as a typical event only at higher Re; see Fig. 9(b). This is also evidenced from the change in appearance of the

(symmetrical) probability density function (PDF) of the lift-related signals (Fig. 9). For Reo6� 103; approximately,
the lift-related PDFs were similar to those of a sine wave with random noise (two peaks) whereas for higher Re the

PDFs were more like that of a narrow band, random noise function (one peak), see Bendat and Piersol (1984). In

Fig. 9(b), for Re ¼ 20� 103; such an event of very low amplitude is depicted (at around t=T ¼ 47). These events are

believed to be due to near-cylinder vortex dislocations causing intermittent major disturbances to the evolvement of

vortex shedding (Norberg, 1993a). They appear to be a characteristic feature of turbulent shedding flow, but only for

Reynolds numbers higher than about 6� 103: The duration of these events was of the order 10 shedding periods.
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Fig. 10. (a) Coherence function g2 and (b) phase F (in deg) between fluctuating pressures at j ¼ 7901: dot-broken line, Re ¼
1:6� 103; solid line, Re ¼ 3:1� 103; broken line, Re ¼ 20� 103; double-dot-broken line, Re ¼ 61� 103:
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However, no characteristic time interval in between such events was found. They appeared to to be completely random

in time. For high Reynolds numbers and when following the amplitude and frequency in time, utilizing the Hilbert

transform (Bendat and Piersol, 1984), it was found that high lift-related amplitudes in general were coupled to shedding

frequencies lower than the mean value. For lower Re; lower than about 6� 103; there was no such apparent coupling;
see also Norberg (1989). Conceivably, it takes longer time to generate the lift-related von K!arm!an vortices within

periods of strong vortex shedding.

Further characteristic differences between results for low and high Re; related to pressure loading signatures and
fluctuating lift, can be seen in Fig. 11, displaying iso-contours of the joint probability function (JPDF) between

pressures at j ¼ 7901 (Re=103 ¼ 1–61).

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Joint probability density functions between fluctuating pressures at j ¼ 7901: (a) Re ¼ 1:0� 103 (d ¼ 4mm), (b) Re ¼
1:5� 103 (d ¼ 4mm), (c) Re ¼ 3:1� 103 (d ¼ 4mm), (d) Re ¼ 5:1� 103 (d ¼ 4mm), (e) Re ¼ 2:0� 104 (d ¼ 40mm), (f) Re ¼
6:1� 104 (d ¼ 40mm). Scaling with local r.m.s. values. Iso-levels: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5. Triangles

indicate maximum levels.
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A straight line at an angle �451 from the horizontal would mean two signals which are perfectly anti-correlated,

whereas two completely random and independent functions would produce a circular distribution with its highest peak

at the origin (Bendat and Piersol, 1984). In rough terms, the two last distributions, Re ¼ 20� 103 (Fig. 9(e)) and
Re ¼ 61� 103 (Fig. 9(f)), can be characterized as a mixture of the two above model functions. However, for low levels
of the JPDF the distributions are cusped, away from the diagonal of perfect anti-correlation. For events creating this

cusped signature one signal makes a relatively strong negative excursion while the other has a rather limited positive

amplitude. In fact, unusual but powerful events with large suction peaks downstream of separation, in particular at

around j ¼ 1551 but also sensed at j ¼ 901; were recorded, but only for Reynolds numbers greater than about 6� 103;
see also Norberg (1986) and Norberg and Sund!en (1987). The JPDFs at lower Re appear to be more complex, see

Fig. 11(a–d). Here the distributions have two peaks along the line of perfect anti-correlation, with a characteristic waist

in between. With decreasing Re; the distributions become wider, the maximum JPDF-level decreases and besides the

central peak region, which is directed along the anti-correlation line, there is also, at low JPDF-levels, a rather strong

directivity bias towards the line for a perfect correlation (pointing 451 upwards). This last effect, as found only for these

low Reynolds numbers, is probably related to the relatively strong coherence for the in-phase frequency components at

low frequencies, see Fig. 10.

In rough terms, the degree of wideness of the JPDFs is inversely proportional to its peak value (given in each sub-

figure). The change in wideness of the JPDFs is also reflected in the rapid change of �Rpp that occurs in between

ReC2� 103 and 8� 103 (Fig. 7). It is worth noting that �Rpp exhibited a maximum at ReC104: However, between
Re ¼ 104 and 2:6� 105 there was only a slight drop in �Rpp; in rough agreement with previous data, see Fig. 7. This
drop in anti-correlation is supposed to be due to effects of transition to turbulence in the separated shear layers. As

compared with the present data, the slightly lower level of �Rpp as found by Taniguchi and Miyakoshi (1990) for

Re ¼ 9:4� 104 is due probably to that no end plates are used (c=d ¼ 14). At such a limited aspect ratio and without

using end plates the shedding flow is expected to be weakened (Moeller, 1982). As a consequence there will be a less

coupling in between the opposing shoulder points of the cylinder.

5.3. Spanwise correlations

To obtain the r.m.s. lift on a finite spanwise section of the cylinder the sectional r.m.s. lift has to be complemented

with information on the spanwise coupling of sectional and fluctuating lift forces. As outlined in Section 2.1, this

information is provided from the correlation function RLLðsÞ where s is the spanwise separation. In this study, as

motivated in Section 2.1, the correlation function RLL was estimated from hot-wire measurements of fluctuating

velocities just outside the separated shear layers close to the cylinder, RLLðsÞERuuðsÞ: Further motivation for this
approximation comes from that turbulence intensity levels in these regions appear to be closely related to the sectional

r.m.s. lift coefficient (Gerrard, 1965; Moeller, 1982); see also Unal and Rockwell (1988). This interrelationship was
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Fig. 12. Spanwise correlation coefficient of fluctuating velocities. Solid and dotted lines represent variations as calculated from

formulas for L=d (Appendix A) using expð�s=LÞ as approximation. Cylinder diameter d (in mm), relative spanwise separation s=d; and
relative positions in the cross-sectional plane ðx=d; y=dÞ are indicated on right.
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noted also from the present measurements. To within the experimental accuracies the two hot wires were always at the

same relative position within a cross-sectional plane. However, the actual position in this plane was found to be of some

importance. For most of the results presented here the relative position was x=d ¼ 0:4–0.5 and y=d ¼ 0:9; with origin at
the cylinder axis. The Reynolds number range covered is from about 0:24� 103 to 75� 103: Results showing the effects
of Re on Ruu; at some selected relative spanwise separations s=d; are shown in Fig. 12. Distributions of Ruuðs=dÞ at
various Re are shown in Fig. 13. Spanwise correlation lengths are found in Fig. 3.

The perhaps most striking features in Fig. 12 are the two local maxima in Ruu as found at Reynolds numbers of about

0:3� 103 and 5� 103 (with a local minimum in between, at ReC1:6� 103). Apart from these, the general trend with

increasing Re is a decrease in spanwise correlation.

As for the second local maximum in spanwise correlation (at ReC5� 103) the first measurements showing this
behavior was published in Norberg (1987a); see also Norberg (1989). Based on the variation of Ruuðs=d ¼ 6:0Þ with Re
(Fig. 12), the peak occurs at Re ¼ 5:1� 103 (d ¼ 6 mm). The author later (Norberg, 1992) carried out some additional

measurements with a larger diameter (d ¼ 10 mm). Although this later study was not as extensive as the first one it still

gave as a result this remarkable peak behavior at around Re ¼ 5� 103 (Fig. 12, s=d ¼ 3:0). It is worth noting that the
two cylinders have completely different aeroelastic properties (solid steel rod of diameter 10 mm as compared with a

hollow steel tube of outer diameter 6 mm). This seems to rule out the possibility that the resonant-like peak behavior is

due to vibrational effects. At around this Re there is also a fundamental change in the spectral quality of the shedding

frequency, as proven from extensive experiments by the author with various cylinder diameters and aspect ratios and
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Fig. 13. Correlation coefficient versus relative spanwise separation. (a) d ¼ 3 mm: Solid line: L1=d ¼ 4; L2=d ¼ 10; n ¼ 3:0; a ¼ 0:90:
Dot-broken line: L1=d ¼ 4; L2=d ¼ 31; n ¼ 2:4; a ¼ 0:93: (b) d ¼ 6mm: Broken line: L1=d ¼ 3; L2=d ¼ 22; n ¼ 2:4; a ¼ 0:49: Dot-
broken line: L1=d ¼ 3; L2=d ¼ 27; n ¼ 3:0; a ¼ 0:61: Solid line: L1=d ¼ 5:3; a ¼ 0: Relative positions (x=d; y=d) of hot wires are

indicated.
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also in two different low-turbulence wind tunnels (Tup0:1%); see also Section 6.3.2. Interestingly, the correlation study
of Leehey and Hanson (1971), see also Blake (1986), extending down to Re ¼ 3� 103 for Tu ¼ 0:04% (c=d ¼ 96),

shows, with increasing Re; a similar rapid drop in spanwise correlation as found in the present study (Figs. 3 and 12).
However, the drop found by Leehey and Hanson occurs at a somewhat lower Reynolds number. The cause of this

discrepancy is unclear. However, it is noted that the results of Leehey and Hanson are to some extent influenced by tiny

vibrations of the cylinder. These vibrations may have had some triggering effect on the shear-layer instability, in

similarity with an effective increase in Reynolds number (Gerrard, 1965; Norberg, 1987a).

On the first local maximum in Ruu (ReC0:3� 103) it ought to be mentioned that the actual Reynolds number where it
occurred was slightly dependent on the relative position of the hot-wire combination. The cylinder diameter in these

measurements was d ¼ 3 mm: At the standard position (x=d ¼ 0:4; y=d ¼ 0:9) a maximum correlation was found at

ReC0:30� 103: In passing, it can be noted (Fig. 12) that this hot-wire position produced correlation coefficients, for
s=d ¼ 6:0; in reasonable agreement with matching results using another diameter (d ¼ 6 mm; ReB2� 103), despite the
obvious violation of perfect geometrical similarity due to constant dimensions of the hot-wire combination. When at

(x=d ¼ 0:7; y=d ¼ 0:9) the maximum in Ruuðs=d ¼ 6:0Þ occurred at Re ¼ ð0:29� 0:30Þ � 103 and finally with the hot-
wire combination at (x=d ¼ 2:5; y=d ¼ 1:2) it showed up at Re ¼ ð0:26� 0:27Þ � 103: As is apparent, there was a slight
decrease in the critical Re with increasing distance from the cylinder. Two reasons for this behavior are suggested. The

first is that the wake transition scenario was somewhat affected by the presence of the hot-wire combination. As shown

in Williamson and Roshko (1990) and Norberg (1994), a peak in base suction occurs at around ReC0:26� 103; the
peak being indicative of a finalization of the wake transition process. In addition, at around this particular Reynolds

number of about 260, the near-wake shedding flow has a strong spanwise coherence (Williamson, 1996b). As the hot-

wire combination was positioned closer to the cylinder, despite being outside the separated shear layers, there could had

been some small alterations imposed on the vortex shedding process with the result of a delay in wake transition, a

stabilizing effect, forcing the transition to occur at a higher Re: Unfortunately, there were no subsidiary measurements
carried out to either confirm or reject this hypothesis. Another reason could be, at around these Reynolds numbers, that

the sequence of spanwise ordering of velocity fluctuations in the wake has an hitherto unknown spatial variation. The

subtle variations due to position might then be just a manifestation of the complexity of the wake transition process. It

should be noted, however, that on the general appearance of the Ruuðs=d ¼ 6:0Þ versus Re there was no significant
change due to the position of hot wires. In addition, the high level of correlation at around Re ¼ ð0:26� 0:30Þ � 103

was largely unaffected by the position of hot wires, see Fig. 12.

As for the local minimum in Ruu (ReC1:6� 103) it was noted that the actual Reynolds number for this minimum to

show up was seemingly unaffected by the relative position of the hot wires. Presumably, the precise critical Re is related

to the onset of observable shear-layer vortices, which has been reported to occur within the range Re ¼ 1200–1800

(Prasad and Williamson, 1997a). As shown in Fig. 12, the correlation level was in general higher the more downstream

the position of the hot wires, the effect being strongest at around the local minimum at ReC1:6� 103: Here it can be
inferred that the closeness to the mean point of primary vortex roll-up (or the mean wake closure point) has an effect of

increasing the spanwise correlation. At around Re ¼ 1:6� 103; the mean wake closure occurs at x=d ¼ 2:3 (Norberg,
1998), which is slightly upstream of the most distant hot-wire position in the present correlation study. Strong

signatures of low-frequency pulsations in the near wake have been reported, especially at streamwise positions close to

the wake closure point (Hanson and Richardson, 1968). Although not contributing largely to the fluctuating lift

(Fig. 10), these low-frequency events do appear to have a significant spanwise correlation (Ferguson and Parkinson,

1967; Sonneville, 1976). The increase in correlation with increasing streamwise distance from the cylinder might also be

connected to an influence of spanwise-correlated shear-layer oscillations, which, at these Reynolds numbers,

presumably are initiated slightly upstream of the wake formation (Bloor, 1964). Nevertheless, the correlation results

which are considered most representative for the fluctuating lift are those which were taken at the position closest to the

cylinder.

Measured distributions of Ruuðs=dÞ were adjusted to fit the weighted model function of Eq. (13), see Fig. 13. In
Fig. 13(b), for Re=103 ¼ 3:0 and 5:1; the spanwise correlation lengths as found from the fitting procedure (L=d ¼ 12:3
and 17:6; respectively) were considered to be overestimated. For very large separations, the resulting model functions
did not exhibit the anticipated behavior of a rapid drop in correlation towards the cylinder end. To remedy this, the

function Ruu was set to zero at a position two diameters from the end plate (at s=d ¼ 38). The lengths reported in Fig. 3

were then obtained from a direct numerical integration of the measured function Ruu with this zero point added

(L=d ¼ 10:4 and 15:2; respectively).
As shown in Fig. 13(b), see also Fig. 12, a very rapid increase in spanwise correlation occurred in between Reynolds

numbers 0:24� 103 and 0:28� 103: For Re ¼ 0:24� 103; the indicated spanwise correlation length was about 9.5
diameters, whereas a value of about L=d ¼ 29 was found for Re ¼ 0:28� 103: As mentioned above, the highest
spanwise correlation for s=d ¼ 6:0 was found within Re ¼ ð0:26� 0:30Þ � 103; the precise value being somewhat
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dependent on the position of hot wires. The maximum spanwise correlation length was estimated to be approximately

30 diameters.

At Re ¼ 0:24� 103; the flow was in the wake transition regime (Williamson, 1996a) with a shedding flow that is

expected to be highly disordered and spanwise fragmented due to the presence of a mix of mode A and B instability

structures (Williamson, 1996b; Henderson, 1997). The spanwise correlation length found at Re ¼ 0:24� 103 is of the
same order as twice the wavelength of the most unstable mode A instability (Barkley and Henderson, 1996). With a

subsequent increase in Reynolds number, the mode B instability becomes the most prominent 3-D feature (Williamson,

1988b).

In Fig. 13(b), the peak in spanwise correlation found at Re ¼ 5:1� 103 is depicted; see also Norberg (1987a, 1989).
The increased levels of correlation appeared to be most prominent for intermediate spanwise separations, at around

10–20 diameters. Similar elevated levels at intermediate separations are found also in the study of Leehey and Hanson

(1971), albeit in their case for Re ¼ 3:25� 103; see Blake (1986).
Presumably, the mismatch in between present correlation results and those of Leehey and Hanson, however, similar

in general appearance, has to do with differences regarding the process of shear-layer transition.

The complexity of the correlation function as found for lower Re seemed to disappear at a Reynolds number of about

8� 103: Here (Fig. 13(b)) the correlation function could be rather well approximated as a simple exponential drop,
Eq. (8). The correlation length of 5.3 diameters for Re ¼ 8:0� 103 is in reasonable agreement with previous

measurements (Fig. 3). For higher Reynolds numbers, Re > 104; the correlation lengths were calculated from the

correlation function at s=d ¼ 2:2 using the exponential drop as a model function (d ¼ 40 mm). The level of correlation

as well as the trend of a slow decrease in L=d with increasing Re are in general agreement with previous findings, see

Fig. 3.

6. Final discussion

The shedding flow in relation to variations in Strouhal number (St), sectional lift coefficient (CL0 ) and normalized

spanwise correlation length (L=d) with Reynolds number (Re) is discussed further in this section.

6.1. Laminar shedding

Onset of vortex shedding occurs at Re ¼ RecC47; e.g. see Dupin and Teissi!e-Solier (1928) and Norberg (1994).
Obviously, it is also the onset of fluctuating lift. The onset can be characterized as a supercritical Hopf bifurcation,

which as well as the resulting stable two-dimensional periodic shedding close to onset can be described by the Stuart–

Landau equation (Provansal et al., 1987). A supercritical parameter may be defined:

e ¼
Re�Rec

Rec

: ð24Þ

Direct and indirect measurements for c=d > 40; approximately, show that the shedding flow close to onset is truly two-
dimensional, regardless of the end conditions; see Williamson (1989), Lee and Budwig (1991) and Norberg (1994).

However, to maintain this 2-D parallel shedding condition at even higher Reynolds numbers there has to be some slight

manipulation at the cylinder ends (Williamson, 1996a). Within this laminar shedding regime, which can be made to

persist up to about Re ¼ 190 (Williamson, 1996a), it is known from numerical simulations (Park et al., 1998) that the

lift fluctuations are almost perfectly sinusoidal. Without end manipulation, e.g. using ordinary end plates, the onset of

slanted shedding occurs at ReE70 (Norberg, 1994) corresponding to eE0:5: From the Stuart–Landau equation, close

to onset of vortex shedding at e ¼ 0; the saturated shedding frequency fS times the viscous time scale d2=n; the Roshko
number, varies linearly with e; i.e.,

fSd2=n ¼ Ro ¼ Re� St ¼ A0 þ A1 �Re: ð25Þ

A least-square fit to the combined St-data of Norberg (1987a, 1994), for 47oReo70 gave (A0 ¼ �3:976; A1 ¼ 0:2016)
with a mean absolute relative error of 0.3% (30 points).

Again from the Stuart–Landau equation, at least close to the onset, the limit-cycle amplitude of periodic velocity

fluctuations in the flow is proportional to e1=2 (Schumm et al., 1994). Although not fully established theoretically, it

seems that the sectional lift amplitude is linearly related to velocity fluctuations close to the cylinder. Consequently and

to leading order a square-root dependency for the r.m.s. lift coefficient versus Re is expected, CL0pe1=2; see also Gerrard
(1997). Results from 2-D simulations within the laminar shedding regime, e.g. Park et al. (1998) and Posdziech and

Grundmann (2000), support this initial square-root dependency. For higher Reynolds numbers a gradual change to a
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linear variation is indicated. Based on published 2-D simulation data for Rep200; see Table 5, the following
approximate formula is suggested (Rec ¼ 47):

CL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=30þ e2=90

p
: ð26Þ

The constants have been adjusted towards the results that were considered the most reliable in terms in terms of

accuracy and large enough calculation domain sizes, in particular those of Rosenfeld (1994), Beaudan and Moin (1994),

Barkley and Henderson (1996), He and Doolen (1997), Park et al. (1998), Baek and Sung (1998), Zhang and Dalton

(1998), Kravchenko et al. (1999) and Posdziech and Grundmann (2000); see Table 5 (Appendix B). For Re ¼ 100 and

200; the two most frequent Reynolds numbers in 2-D simulation studies, the r.m.s. lift coefficients from Eq. (26) are

0.23 and 0.48, respectively. The mean absolute deviation between Eq. (26) and the extensive low-blockage CL0 -data of

Posdziech and Grundmann (Oliver Posdziech, pers. comm.), for 47:5pRep200 (21 points), is 0.004.
Considering the whole laminar shedding regime the best representation of the StðReÞ using only two constants seems

to be the square-root functional relationship introduced independently by Fey et al. (1998) and Williamson and Brown

(1998),

St ¼ A þ B=
ffiffiffiffiffiffi
Re

p
: ð27Þ

A least-square fit to the combined parallel shedding data of Norberg (1987a, 1994) (92 points, Re ¼ 47� 165) gave
(A ¼ 0:2663; B ¼ �1:019), with a mean absolute relative error of only 0.3% for the Strouhal number. The constants are

virtually the same as found by Williamson and Brown (A ¼ 0:2665; B ¼ �1:0175) using the data of Williamson (1988a).
In summary, both Strouhal number and r.m.s. lift coefficient increases rapidly within the laminar shedding regime. At

onset (ReC47) the Strouhal number is 0.12 (Ro ¼ 5:5). At the highest attainable Reynolds number for two-dimensional
flow, ReC190; the r.m.s. lift coefficient is CL0 ¼ 0:45 (Posdziech and Grundmann, 2000). The corresponding Strouhal
number is St ¼ 0:19 (Miller and Williamson, 1994).

6.2. Wake transition

Onset of the first intrinsic three-dimensional instability, the mode A instability, occurs in between Re ¼ 160 and 190;
the precise value being somewhat dependent on the end conditions (Williamson, 1996a). The critical spanwise

wavelength of mode A at its inception is about 4 diameters, see Williamson (1996a). As from this point and up to about

Re ¼ 230; the approximate onset of mode B (Williamson, 1988b), the shedding flow is expected to be highly disturbed,
comprising a mix between mode A instability structures and large-scale, spot-like ‘‘vortex dislocations’’, in Williamson

(1992) referred to as mode An: Following Williamson (1996a), the natural wake transition follows the sequence (2-D-
An - B). For obvious reasons the change from 2-D to An involves a dramatic decrease in the spanwise correlation of

velocity fluctuations in the wake. It also involves a significant drop in shedding frequency and its associated spectral

quality (Norberg, 1987a; Williamson, 1988a, 1996b). The sectional r.m.s. lift coefficient is expected to decrease in this

process (Zhang et al., 1995).

In mode An; the spanwise correlation length associated with near-wake velocity fluctuations can be expected to be of
the same order as the wavelength of the most unstable mode A instability. The present measurements indicated a

spanwise correlation length of about 7 diameters at the lowest attained Reynolds number, Re ¼ 230; which is about
twice this wavelength (Barkley and Henderson, 1996). As shown in Norberg (1994), there is, within ReC165 to
ReC230; a relatively weak influence of the necessary aspect ratio to obtain independent global results. This implies (see
also Roshko, 1954) a rather low spanwise correlation length for this initial, An-dominated part of the wake transition

regime, estimated here to be approximately 7 cylinder diameters, L=dE7:Within flow state An and with increasing Re;
both Strouhal number (Williamson, 1996a) and r.m.s. lift coefficient (Zhang et al., 1995) increase.

With the inception of mode B (ReE230), mode A being in a declining phase, there is a stabilization on the near-wake
vortex shedding (Williamson, 1996b). With a subsequent increase in Re; mode B gradually becomes the dominant 3-D
wake feature. During this process the spanwise correlation is expected to increase. The present experiments indicated a

spanwise correlation length of about 9.5 diameters at Re ¼ 240 rising to a maximum of about 30 diameters at

Re ¼ 260–300. As shown in Williamson (1996b), the shedding flow at ReC260 exhibits a remarkable high spanwise
coherence, which is supported from the present measurements. It is also in conformity with the very large aspect ratios

which are needed for independent results at around these Reynolds numbers (Norberg, 1994).

After the inception of mode B and with an increase in Re the r.m.s. lift coefficient continues to increase (Zhang et al.,

1995). However, based on the simulations by Zhang et al., there seems to be a local maximum reached for CL0 at around

the same point where there is a peak in base suction (Williamson and Roshko, 1990), which also coincides with the re-

introduction of an extremely high spectral quality of the shedding frequency, at ReC260 (Norberg, 1987a).
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For wake-transitional flow, the following approximate linear variations for the r.m.s. lift coefficient are suggested,

based on 3-D simulations by Zhang et al. (1995) and Zhang and Dalton (1998):

CL0 ¼
0:43� ðRe=230Þ ð165oRep230Þ;
0:78� ðRe=260Þ � 0:26 ð230oRep260Þ:

(
ð28Þ

The shaded region in Fig. 2 for Re ¼ 165–190 is supposed to reflect the ambiguity in CL0 due to effects of various end

conditions (Williamson 1996a) and the subcritical nature of the mode A instability (Barkley and Henderson, 1996).

For flow around a circular cylinder, it has to be mentioned that there has been no mention in the literature about the

presence of distinct lift (and drag) pulsations during wake transition. Such events have been observed from simulations

of transitional flows around sharp-edged cylinders, e.g. a normal flat plate (Balachandar et al., 1997) and a square

cylinder (Sohankar et al., 1999). As suggested by Sohankar et al. (1999) these lift pulsations are due to a mismatch in

phase between lift and shedding frequency variations, not found for the circular cylinder (Henderson, 1997). This

mismatch in phase might be related to the separation line being fixed for a sharp-edged cylinder but not so for the

circular cylinder.

6.3. Turbulent shedding

Based on previous measurements, e.g. Roshko (1954), Hama (1957), Bloor (1964), Gerrard (1978) and Unal and

Rockwell (1988), the (time-mean position of) transition to turbulence in the wake reaches the formation region

somewhere within ReC260 to 300; presumably closer to Re ¼ 260: Turbulent shedding conditions prevail for all higher
Reynolds numbers.

6.3.1. Lift crisis

As from the onset of turbulent shedding and with increasing Re there seems to be an increasing disorder in the fine-

scale three dimensionalities associated with the secondary and essentially streamwise-oriented vortices of type mode B

(Williamson, 1996a). Conceivably, this increasing disorder is simply due to the increasing significance of inertial effects

with increasing Re: However, at these rather low Reynolds numbers, viscous effects may still play a significant role for
the vortex-shedding process (Roshko, 1993). As shown in Brede et al. (1996) the normalized circulation of the

secondary mode B vortices (scaling with Ud) increases by as much as 50% between ReC300 and Re ¼ 500 (which is

their highest attainable Re). This increase in secondary (essentially streamwise) circulation occurs probably at the

expense of the primary (essentially spanwise) circulation associated with the roll-up of the von K!arm!an vortices (Mansy

et al., 1994). Consequently, since the alternate roll-up is closely related to fluctuating lift, CL0 drops with increasing Re:
Based primarily on the interrelation between base suction, vortex formation length and sectional r.m.s. lift it can be

inferred that there is a drop in CL0 with increasing Re already from ReC260: Three-dimensional simulations indicate
CL0E0:5 for Re ¼ 300 (Zhang et al., 1995; Kalro and Tezduyar, 1997; Kravchenko and Moin, 1998). For

260oRep1:6� 103; also taking present experimental data (Table 3) into account, the following tentative formula is
suggested:

CL0 ¼ 0:045þ 1:05� ð1�Re=1600Þ4:5: ð29Þ

From Re ¼ 260–300 to ReC1:6� 103 there was an indicated rapid drop in the spanwise correlation length, from about

30 to 8 diameters (Section 5.3). The corresponding increase in Strouhal number is very small, only about 5% (Fig. 1).

The present data suggests that a local minimum of the sectional r.m.s. lift coefficient occurs at ReC1:6� 103; the
indicated minimum value being CL0C0:045: Local extreme values at around this particular Reynolds number also occur
for other time-averaged quantities. In addition, the anti-correlation between fluctuating pressures at the shoulder

positions of the cylinder (Fig. 7) and the spanwise correlation of lift-related velocity fluctuations (Fig. 12) reach local

minima at around Re ¼ 1:6� 103: These facts taken together suggest that the lift-related shedding flow reaches a

position of extreme weakness at around Re ¼ 1:6� 103; see also Gerrard (1978). However, the vortex shedding still
persists and has a strong periodicity, the Strouhal number at Re ¼ 1:6� 103 being StC0:212 (Norberg, 1994).
It is to be noted that from about Re ¼ 270 to 1400 the total r.m.s. lift force on a large-aspect-ratio cylinder,

proportional to CL0 �Re
2 �

ffiffiffiffiffiffiffiffiffi
L=d

p
(Eqs. (3) and (7)), is indicated to be approximately constant. It seems appropriate to

classify this remarkable behavior (and the subsequent very low r.m.s. lift coefficient at ReC1:6� 103) as a lift crisis. The

suggested variations for CL0 and L=d (Appendix A) indicate that the corresponding increase in free-stream velocity with

a factor of about 5 (1400=270 ¼ 5:2) will only cause a 715% variation in the total r.m.s. lift acting on the cylinder! In

perspective, the total mean drag increases by about a factor 600 (CDE1).
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The lift crisis may have some relation to the phenomenon described in Yokoi and Kamemoto (1992, 1993) as ‘‘spread

spots’’. The spread spots are shown to have a close relationship with the rib-like secondary vortices of type B, which in

turn are firmly connected to the von K!arm!an vortices (Bays-Muchmore and Ahmed 1993; Williamson, 1996a). It

appears that there are feedback motions in between the ribs, the roll-up of primary (von K!arm!an) vortices and the

process of flow separation from the cylinder, causing spanwise undulations of the separation line. At present, however,

the reason for these spots to occur and their significance for fluctuating lift and its associated spanwise correlation are

unclear.

6.3.2. Two turbulent shedding modes

The present results confirm the existence of two turbulent shedding modes within the so-called subcritical regime, first

noted in Norberg (1987a). The following is a short account for a chain of possible reasons for such a mode change to

occur as well as some descriptive characteristics.

As from the initiation of turbulent shedding and up to about Re ¼ 5� 103; the streamwise mean position of
wake transition is rather fixed with respect to the cylinder, although being upstream of the mean position of

wake closure (Bloor, 1964). It seems that, at these Re; the transition to turbulence in the wake is not due to a shear-
layer instability, if so the position ought to be moving towards the cylinder with increasing Reynolds number. Instead,

at these Re; it is suggested that the transition to turbulence has its origin in the near-wake development of the rib-like
secondary vortices of type mode B. As such, a rib-like vortex structure is swept across the wake centreline, being on

the upstream side of its associated von K!arm!an vortex within the connecting braid shear layer inside the formation

region (Bays-Muchmore and Ahmed, 1993; Brede et al., 1996; Lin et al., 1996), there will be a rapid stretching of the

structure itself which, in connection with possible interactions with the primary roll-up, leads to a rapid break-down

into small-scale turbulence. It seems that mode B vortices also have some sort of a timing or regulating role for

the vortex shedding process. The spectral quality of the shedding frequency, from about Re ¼ 260 to 5:1� 103; is
extremely high (Norberg, 1987a). Interestingly, this high-quality mode of turbulent shedding appears not to be present

for flow around sharp-edged cylinders with fixed separation lines (Norberg, 1993b). Presumably, for the circular

cylinder, the feedback mechanism responsible for this stabilization of the shedding frequency has to do with the above-

mentioned link in between the rib-like vortices, the developing von K!arm!an vortices and ultimately with the separation

process.

The Reynolds number for extreme shedding weakness, ReC1:6� 103; coincides with the point where shear-layer
vortices show up as important ingredients in the near wake (Prasad and Williamson, 1997a). Interestingly, at around

this Re; see Norberg (1998), the indicated (estimated) position of transition to turbulence in the separated shear layers
(Roshko, 1993; Williamson, 1996a) coincides approximately with the streamwise position of wake closure. However,

the actual wake transition occurs further upstream, presumably, as suggested above, triggered by the mode B vortices.

Nonetheless, the shear-layer vortices will introduce additional shear stresses to the near wake and, to balance this

(Roshko, 1993), the formation region shrinks and the base suction increases (Linke, 1931; Bloor 1964; Norberg, 1994,

1998). Consequently, the sectional CL0 increases, at first rather slow but as shown in Figs 2 and 8 there is a subsequent

very rapid increase in between Re ¼ 5� 103 and 7� 103:
The presence of shear-layer vortices of significant strength within the wake formation region opens the possibility for

direct interactions with the mode B vortices, already present within this region (Brede et al., 1996). As outlined in

Norberg (1998), it is suggested that an interaction process of importance for the vortex shedding (and thus fluctuating

lift) occurs in between spanwise length scales of these two types of (secondary) vortices, lSL

z and lB

z :
With an increase in Re the indicated time-mean value for lSL

z is approaching the corresponding value for lB

z (Norberg,

1998). During the same process the indicated mean position of transition in the shear layers moves upstream, closer to

the observed (Bloor, 1964), actual mean position of wake transition, which presumably is mode-B related. Conceivably,

this increases the mutual coupling in between these secondary vortical structures with the result of an increased

spanwise correlation of near-cylinder velocity fluctuations. With a subsequent further increase in Reynolds number,

there will eventually be a concurrence in between the mean values of lSL

z and lB

z : The analysis in Norberg (1998)
indicates that this resonant, matching condition (lSL

z ¼ lB

z E0:8� d) occurs at ReC5� 103; which then is in agreement
with the peak in spanwise correlation found at around this particular Reynolds number (Fig. 12). In addition, at

ReC5� 103; the indicated streamwise position of shear-layer transition equals the corresponding position of the actual
wake transition (Bloor, 1964; Norberg, 1998), about 1:1 diameters downstream of the cylinder axis. With a subsequent

increase in Re; it is now the shear-layer vortices that trigger the wake transition, introducing a random forcing on the

development of the regulating mode B vortices and subsequently also on the primary roll-up. At the transitional

Reynolds number of about 5� 103; the harmony between the development of mode B and von K!arm!an vortices is lost,

causing spanwise undulations of the formation length, a decrease in the spectral quality of the shedding frequency and a

decrease in spanwise correlation. This is the inception of the low-quality mode of turbulent shedding.
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With increasing Re in the low-quality mode, the wake transition, now being governed primarily by a Kelvin–

Helmholtz instability mechanism, moves further and further upstream, causing more and more disruptions and random

forcing to the vortex-shedding process. Occasionally these disruptions lead to random-positioned vortex dislocations

along the span. As suggested in Norberg (1993a) the local sectional lift amplitude during time periods of such a vortex

dislocation is very low. Within the low-quality mode the fluctuating lift exhibits a characteristic amplitude modulation

(Fig. 9(b)), high lift amplitudes being associated with strong vortex shedding where von K!arm!an vortices are rolling up

close to the cylinder with a significant spanwise correlation; for low amplitudes the shedding is weak, the vortex

formation region elongated and presumably the spanwise correlation of lift-related flow is much lower. It is thus

conjectured that the phenomenon of distinct lift modulation (‘‘beating’’), characteristic for the low-quality mode, is due

to the randomness being imposed on the formation of von K!arm!an vortices by the transition to turbulence in the

separating shear layers.

The change-over from the high-quality shedding mode displaying a fairly regular vortex shedding and associated

fluctuating lift amplitudes (Fig. 9(a)) with only minor spanwise undulation of the developing von K!arm!an vortices to

the low-quality shedding mode displaying characteristic lift amplitude modulation (Fig. 9(b)), significant spanwise

undulations and occasional but characteristic vortex dislocations, appears to be fully completed at around Re ¼ 8� 103

(Norberg, 1993a, 1998). In between ReC6� 103 and 8� 103 there is a plateau-like behavior of the base suction versus
Re (Norberg, 1994). This ‘‘kink’’ in base suction is believed to be just another manifestation of the change-over between

the high- and low-quality shedding modes (Norberg, 1998).

Some differences between the high- and low-quality modes are depicted in Fig. 14. In the high-quality mode (left,

Re ¼ 3� 103) the upper separated shear layer can be seen to dip down towards the wake centerline. This was a
characteristic and regular feature for this mode and is believed to be caused by suction actions from mode B vortices

when being drawn across the wake centerline along with its associated von K!arm!an vortex. Being on the upstream side

of the von K!arm!an vortex this cross-over of mode B vortices gives a signature of a local maximum in the r.m.s.

streamwise velocity (u0) along the wake centerline, upstream of the local maximum associated with (primary) vortex

formation (Norberg, 1998). For Re ¼ 3� 103; these two local maxima occur at about 1.4 and 2.1 diameters

downstream of the cylinder axis. In the low-quality mode (right, Re ¼ 8� 103), only one local maximum of u0 is present

along the wake centerline, here at x=d ¼ 1:6: Within this mode the formation of mode B vortices is disturbed

by the transition to turbulence and the upstream peak deteriorates to an inflexional point. At the exposure time for

Re ¼ 8� 103 in Fig. 14, the shedding is within a period of strong vortex shedding. An example of sectional flow
appearance within a period of weak vortex shedding, possibly during a near-wake vortex dislocation, is shown in

Norberg (1993a).

Fig. 14. Illustration of turbulent shedding modes. Left: Re ¼ 3:0� 103 (high-quality mode); Right: Re ¼ 8:0� 103 (low-quality mode).
Upper: smoke-wire visualizations (Norberg, 1993a); Lower: mean pressure distribution Cp (dotted) with shaded area corresponding to

72� Cp0 ; horizontal line from origin represents pressure CD and vertical line from origin 72� CL0 ; the cylinder diameter being two
units. Filled circles on cylinder surface are indicated separation points (max. Cp0 ); filled circles along wake centerline (line-dotted)

depict local maxima for r.m.s. of streamwise velocity fluctuations, unfilled circle an inflexional point (Norberg, 1998).
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6.3.3. Closure

At around Re ¼ 104 the transition in the separated shear layers has reached a mean position corresponding to just

above the base point of the cylinder (Linke, 1931; Bloor 1964; Norberg, 1998). As from about this Re; the variations of
CL0 and L=d with increasing Re slow down (Figs. 2 and 3).

At Re ¼ 1:6� 105 the Strouhal number passes through a minimum value of StC0:186; while, as depicted in Fig. 1,
the relative shedding bandwidth passes through a maximum. The relative shedding bandwidth at this point is about 50

times higher than just the before the change-over to low-quality shedding. The associated sectional r.m.s. lift coefficient

is about CL0 ¼ 0:51 (Fig. 2). As relative shedding bandwidth and lift modulation are interrelated, the amplitude
modulation of fluctuating lift is supposed to be at its largest magnitude at around this Re; see also Szepessy and
Bearman (1992). At these high Re; the sectional r.m.s. drag coefficient also reaches appreciable magnitudes, the ratio
CL0=CD0 being approximately 3 at Re ¼ 105 (Batham, 1973; Sonneville, 1976; Taniguchi and Miyakoshi, 1990).

Moreover, at ReC1:6� 105; due to the closeness of transition in the separated shear layers, the first signs of a
reattachment behavior becomes visible in the measured r.m.s. pressure distributions, at jC1051 (Fig. 5). With a
subsequent increase in Re; the build-up to a fully reattached flow continues, the position of laminar separation moves
downstream, the wake narrows and the Strouhal number increases and finally at around Re ¼ 2:3� 105 there is a rapid
fall in both CD and CL0 when entering the critical regime (Fig. 8).

Based primarily on present sectional CL0 -data, see Fig. 2, the following empirical CL0 -functions, for Reynolds

numbers from Re ¼ 1:6� 103 to 2:2� 105; are suggested:

CL0 ¼
0:045þ 3:0� ½logðRe=1600Þ	4:6 ð1:6oRe=103p5:4Þ;

0:52� 0:06� ½logðRe=1600Þ	�2:6 ð5:4oRe=103p220Þ:

(
ð30Þ

In closure, it needs to be pointed out that all hitherto published 3-D simulation results on CL0 (Table 6, Fig. 2) are

extracted from spanwise-averaged lift data. For unclear reasons the unsteady coefficients have been time-averaged after

a process of spanwise averaging (and not the other way around). As the shedding flow at turbulent conditions is

supposed to be homogeneous in the spanwise direction with a limited spanwise correlation, a spanwise averaged r.m.s.

lift coefficient will ultimately drop to zero with a subsequent increase in the spanwise dimension [Eq. (7)]. Obviously, the

sectional r.m.s. lift coefficient does not exhibit this behavior. Nevertheless, the achievements in this area have been

promising and have to a certain extent increased our knowledge of intrinsic lift-related flow phenomena. For instance,

the simulations of Henderson (1997) for Re ¼ 1000; which are not claimed to be fully resolved in all parts of the wake,
show spanwise flow evolutions and associated lift signals, which, in experiments, are typical for much higher Re with

low-quality shedding (Henderson, 1998). Also the numerous 3-D simulation studies carried out for Re ¼ 3:9� 103

show a near-wake behavior of velocity fluctuations, which, also from experiments (Norberg, 1998), is characteristic for

the high-Re; low-quality mode of turbulent shedding (pers. comm., Michael Breuer, Jochen Fr .ohlich, Arthur

Kravchenko; also see Breuer, 1998; Fr .ohlich et al., 1998; Kravchenko and Moin, 1998). The mismatch on the effective

global Reynolds number may be related to numerical dissipation effects due to insufficient spatial resolution, if so most

probable within the vortex formation region where the assumed subtle three-dimensional process of wake transition and

mode change occur. Also, limitations on the spanwise dimension may have had some influence, see Table 6.

7. Conclusions

Sectional root-mean-square (r.m.s.) lift coefficients have been estimated using a technique based on integration of the

distribution of r.m.s. pressure around the circumference and simultaneous measurement of fluctuating pressures at the

shoulders of the cylinder. In these measurements the Reynolds number range is from about Re ¼ 0:7� 103 to 2:1� 105:
Between Reynolds numbers 1:6� 103 and 20� 103 an approximate 10-fold increase in the sectional r.m.s. coefficient is
indicated, from about CL0 ¼ 0:045 to 0:47: A maximum sectional r.m.s. lift coefficient occurs at the upper end of the

tested Reynolds number range, the value CL0 ¼ 0:52 being in overall agreement with previous experiments.
Coefficients of spanwise correlation, based on near-cylinder velocity fluctuations just outside of the separated shear

layers, have been measured from about Re ¼ 0:23� 103 to 75� 103: At ReC230; the approximate onset Re for the
mode B instability, the one-sided spanwise correlation length (L) is about the twice the wavelength of the most unstable
mode A instability, L=dE7: Up to Re ¼ 260–300 the spanwise correlation increases dramatically, the indicated peak

value being L=dE30: Apart from a local maximum at ReC5:1� 103; L=dE15; there is then a gradual decrease in the
spanwise correlation length with increasing Reynolds number, a value of about 3 diameters being indicated at Re ¼
75� 103; in accordance with previous experiments.
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The experiments provide further evidence for a fundamental change in mode of shedding in between Re ¼ 5� 103

and 8� 103 (high- and low-quality mode of turbulent shedding, respectively). It is conjectured that the phenomenon of
distinct lift amplitude modulation for Re > 6� 103; approximately, is due to the randomness imposed on the formation
of von K!arm!an vortices by the transition to turbulence in the separated shear layers.

Note added in proof

Some interesting new results from numerical experiments have recently been published. For instance, Posdziech and

Grundmann (2001) report results on the spanwise-averaged r.m.s. lift coefficient for Re ¼ 195–330. Their results using

different relative spanwise dimensions, confirm the finding of the present paper that there is a peak in spanwise

correlation of fluctuating sectional lift forces at around Re ¼ 0:28� 103 (Figs. 3, 12 and 13).

Appendix A. Empirical functions

Suggested empirical functions for the Reynolds number dependence of Strouhal number (St), sectional r.m.s. lift

coefficient (CL0 ) and normalized spanwise correlation length (L=d), for Reynolds numbers Re ¼ 47 to 3� 105; are
summarized in Table 4. As with all empirical functions, they are open for re-evaluation when more data has been

collected.

Appendix B. Review on numerical simulations

In the majority of previous numerical studies with results on fluctuating lift the main interest has been on

introduction of new computational techniques and code validation. Results are often reported only for a single

Table 4

Summary of empirical functions

1. Strouhal number

Re StC
47� 190 0:2663� 1:019=

ffiffiffiffiffiffi
Re

p
165� 260 �0:089þ 22:9=Re þ 7:8� 10�4 � Re

260� 325 0:2016
325� 1:6� 103 0:2139� 4:0=Re

1:6� 103 � 1:5� 105 0:1853þ 0:0261� expð�0:9� x2:3Þ x ¼ logðRe=1:6� 103Þ
1:5� 105 � 3:4� 105 0:1848þ 8:6� 10�4 � ðRe=1:5� 105Þ4:6

2. Sectional r.m.s. lift coefficient

Re CL0C
47� 190 ðe=30þ e2=90Þ1=2 e ¼ ðRe � 47Þ=47
165� 230 0:43� ðRe=230Þ
230� 260 0:78� ðRe=260Þ � 0:26
260� 1:6� 103 0:045þ 1:05� ð1�Re=1:6� 103Þ4:5

1:6� 103 � 5:4� 103 0:045þ 3:0� x4:6 x ¼ logðRe=1:6� 103Þ
5:4� 103 � 2:2� 105 0:52� 0:06� x�2:6 x ¼ logðRe=1:6� 103Þ
2:2� 105 � 3:4� 105 0:09þ 0:43� exp½�105 � ðRe=106Þ10	

3. One-sided spanwise correlation

Re L=dE
47� 190 N

165� 285 11:5� ½1� erfðZÞ	 þ 7:0 Z ¼ 22� ðRe=250� 1Þ
285� 1:5� 103 7:6� ðRe=1:5� 103Þ�0:82

1:5� 103 � 1:72� 103 7.6

1:72� 103 � 5:1� 103 7:6� ðRe=1:72� 103Þ0:60

5:1� 103 � 8:0� 103 14:6� ðRe=5:1� 103Þ�2:3

8:0� 103 � 2:4� 105 2:6� ðRe=2:4� 105Þ�0:20

2:4� 105 � 3:0� 105 1:4� ðRe=3:0� 105Þ�2:7
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Table 5

Two-dimensional simulations of fluctuating lift (Reo500)

Study Re H=d Xu=d Xd=d N=103 CL0 ðReÞ G:M:V

100 200

Jordan and Fromm (1972) 100/400 188 94 94 12 0.19 – O:FD:co
Smith and Brebbia (1977) 100 12 8.4 22 0.51 .14–.31 – R:FE:co
Swanson and Spaulding (1978) 100 135 68 68 2.4 0.24 – O:FD:PV

Gresho et al. (1984) 50–400 8.8 4.6 16 1.8 0.52 0.74 R:FE:PV

Lecointe and Piquet (1984) 200 40 20 20 3.1 – .50/.35 O:FD:co
Braza et al. (1986) 100/200 115 57 57 13 0.21 0.55 O:FV:PV

Borthwick (1986) 40–400 80 40 40 8.2 0.18 0.43 O:FD:co
Karniadakis (1988) 200 10 5 40 ? – 0.48 R:SE:PV

Lecointe and Piquet (1989) 140/200 80/110 40/55 40/55 23/109 – 0.42 O:FD:co
Benson et al. (1989) 100/200 80,5 40 40 17 0.27 0.46 Q:DV:co
Dougherty et al. (1989) 80 100 50 50 8.4 – – O:FD:PV

Dougherty et al. (1989) 200 50 25 50 9.0 – 0.50 C:FD:PV

Engelman and Jamnia (1990) 100 16 8.0 25 14 0.26 – R:FE:PV

Franke et al. (1990) 50–300 40 20 20 8.3–26 – 0.46 O:FV:PV

Rogers and Kwak (1990) 200 20 10 10 6.0 – 0.46 O:FD:PV

Tezduyar and Shih (1991) 100 16 8.0 25 4.8 0.29 – R:FE:PV

Tabata and Fujima (1991) 100 15 7.5 22 2.3 0.26 – R:FE:PV

Behr et al. (1991) 100 16 8.0 25 4.8 0.23 – R:FE:co
Sa and Chang (1991) 50–200 43 22 22 2.6 0.17 0.24 O:FD:co
Li et al. (1991) 45–300 10 5.0 20 0.83 0.29 – R:FE:PV

Li et al. (1992) 100 10 5.0 20 2.6 0.24 – R:FE:PV

Slaouti and Stansby (1992) 100/200 50,5.5 25 25 ? 0.28 0.50 Q:DV:co
Hwang and Lin (1992) 100/200 18 9.3 18 6 0.27 0.42 C:FD:PV

Meneghini and Bearman (1993) 200 50 25 25 23 – 0.54 O:DV:co
Stansby and Slaouti (1993) 60–180 200 100 100 13 0.24 – O:DV:PV

Anagnostopoulos (1994) 99–130 6.7 3.8 20 2.2 0.19 – R:FE:co
Rosenfeld (1994) 200 61 30.5 30.5 263 – 0.48 O:FV:PV

Lin and Wu (1994) 46–200 20 10 10 5.1 0.25 0.49 O:FV:PV

Beaudan and Moin (1994) 80/100 300 150 150 39/51 0.24 – O:FD:PV

Behr et al. (1995) 100 32 8.0 22 9.7 0.26 – R:FE:PV

Zhang et al. (1995) 40–300 12 6.0 16 21 0.25 0.53 C:FD:PV

Newman and Karniadakis (1995) 200 25 12.5 30 5.9 – 0.51 C:SE:PV

Anagnostopoulos et al. (1996) 106 20 5.0 20 6.5 – – R:FE:co
Lu et al. (1996) 100 25 12.5 12.5 23 0.22 – O:FS:PV

Blackburn and Henderson (1996) 250 25 12.5 25 5.5 – – C:SE:PV

Newman and Karniadakis (1996) 100 25 12.5 30 C7 0.24 – C:SE:PV

Lu and Dalton (1996) 185 50 25 25 131 – – O:FD:PV

Barkley and Henderson (1996) 190 56 16 25 22 – – R:SE:PV

Gunzburger and Lee (1996) 60/80 10 5.0 15 3.7 – – R:FE:PV

Cheng et al. (1997) 200 100 50 50 10 – 0.48 O:FV:PV

Tang and Aubry (1997) 56–200 24 104 104 102 0.21 0.45 O:FV:co
Lilek et al. (1997) 100 32 16 20 18 0.24 – R:FV:PV

Zhang and Dalton (1997) 200 50 25 25 21 – 0.38 O:FD:co
Kalro and Tezduyar (1997) 300 15 7.5 30 4.7 – – R:FE:PV

Kjellgren (1997) 100 16 7.6 23 5.3 0.19 – R:FE:PV

He and Doolen (1997) 50–150 111 55 55 44 0.23 – O:LB:PV

Gharib et al. (1997) 100 – – – – 0.23 – –:DV:uo
Pi *nol and Grau (1998) 60/100/200 25 5.0 20 16 0.19 0.42 R:FD:co
Baek and Sung (1998) 110 56 28 20 32 – – C:FD:PV

Jameson and Martinelli (1998) 150/200 32 16 16 66 – 0.45 O:FD:PV

Olinger and Alexandrou (1998) 100 8.0 4.0 20 1.9 0.26 – R:FE:PV

Persillon and Braza (1998) 100–300 16.5 9.8 22 22 0.27 0.56 R:FV:PV

Park et al. (1998) 60–160 100 50 20 39 0.24 – C:FD:PV

Zhang and Dalton (1998) 200 100 50 50 20.5 – 0.48 O:FS:PV

Jia (1998) 200 50 25 25 10 – 0.44 O:FD:PV
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Reynolds number, the most common for 2-D flow being Re ¼ 100; 200; see Table 5. The unconfined cylinder is mostly
addressed and for physical realization of this canonical case a sufficiently large domain is required (upstream, sideways,

downstream and spanwise). A high accuracy demands for a sufficiently fine spatial resolution, in all parts of the

domain, and as the flow under consideration is time dependent there is also a need for a sufficiently fine time resolution.

Even if such a fine spatio-temporal resolution is fulfilled, the required necessary minimum domain distances (for

realization) will be dependent on the Reynolds number and the applied boundary conditions, respectively.

Tables 5 and 6 are not exhaustive regarding all various numerical parameters or factors which may have an influence

on local and global results. For instance, time step, boundary conditions and parameters related to spatial resolution

are not included. The reader is referred to specific references for more details. For 2-D only studies with Reo500 are
included whereas the restriction for 3-D is Reo105:
The tables contain some parameters and abbreviations, explained as follows. Parameter H is the width of the domain

perpendicular to the oncoming flow (in the plane containing the cylinder axis) whereas Xu and Xd are the distances from

the cylinder axis to the upstream and downstream boundary, respectively. Usually, the inverse of H=d is referred to as

blockage (b ¼ d=H). In Table 6, also the spanwise dimension Lz and the Smagorinsky constant Cs are included (Cs ¼ 0

means that no subgrid scale model is used). For all simulations in Table 6 a periodic boundary condition is applied at

the cylinder ends, Lz then represents the spanwise distance over which the simulated flow is periodic, except in Persillon

and Braza (1998) who use Neumann boundary conditions. The last column in Table 5 provides (as a sequence G:M:V)

the grid/domain type (G), solution method (M) and solution variables (V). For grid/domain types, O refers to a polar or

Table 5 (continued)

Study Re H=d Xu=d Xd=d N=103 CL0 ðReÞ G:M:V

Liu et al. (1998) 100–200 ?? ?? ?? 66 0.24 0.49 O:FD:PV

Kravchenko et al. (1999) 80/100 120 60 60 32 0.22 – O:FD:PV

Zhou et al. (1999) 100/200 125 62 62 20 0.22 0.59 O:DV:co
Patnaik et al. (1999) 100/200 20 5.0 30 2.1 0.35 0.65 R:FE:PV

Bertagnolio (1999) 200 16 5.0 20 26 – 0.50 R:FD:PV

Visbal and Gaitonde (1999) 100 100 50 50 31 0.22 – O:FD:PV

Su and Kang (1999) 100 20? 20? 40? 19 0.24 – R:FV:PV

Farrant et al. (2000) 200 20 16 14 19 – 0.51 R:FE:PV

Posdziech and Grundmann (2000) 47.5–330 140 70 50 19 0.23 0.48 C:SE:PV

Table 6

Three-dimensional simulations of fluctuating lift (Reo105)

Study Re H=d Xu=d Xd=d Lz=d Cs
a CL0

Batcho and Karniadakis (1991) 500 6? 3? 13? 1.57 0 0.2b

Kato and Ikegawa (1991) 104 10 5 15 2.0 0.1 0.27

Izumi et al. (1994) 1100 30 15 15 6.0 0 0.26

Beaudan and Moin (1994) 3900 150 75 75 3.14 0 0.07

Zhang et al. (1995) 140–300 12 6 16 6/9 0 0.26–0.55

Mittal and Balachandar (1995) 525 15 7.5 7.5 1.0 0 0.45

Henderson and Karniadakis (1995) 1000 44 22 48 50.3 0 0.2

Henderson (1997) 1000 64 32 48 25.1 0 0.3b

Lu et al. (1997a) 104 25 12.5 12.5 2.0 0.1 0.46

Lu et al. (1997b) ð0:3; 2:0; 4:4Þ � 104 49 24.5 24.5 2.0 0.1 (0.48,0.38,0.42)b

Kalro and Tezduyar (1997) 300/800 15 7.5 30 4.0 0 0.6/0.4b

Kalro and Tezduyar (1997) 104 15 7.5 30 4.0 0.15 0.3b

Kravchenko and Moin (1998) 300 60 30 30 6.28 0 0.40

Fr .ohlich et al. (1998) 3900 30 15 15 3.14 0.1 0.3b

Persillon and Braza (1998) 100–300 16.5 9.8 22 2.25 0 0.27–0.7

Zhang and Dalton (1998) 100 43 21 21 11 0 0.23

Zhang and Dalton (1998) 200 100 50 50 15 0 0.43

Evangelinos and Karniadakis (1999) 1000 44 22 69 12.6 0 0.099

aSmagorinsky constant in subgrid scale model, a zero means that no modeling is applied.
bFrom time series, value has been estimated.
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O-grid (for such grids H; Xu and Xd are coupled, Xu ¼ Xd ¼ H=2); R refers to a rectangular domain; C to a domain

which is elliptic or polar upstream and rectangular downstream (C-grid/domain) and finally Q is a domain which has a

polar grid overlapping a smaller rectangular grid extending downstream. For solution methods, FD means solutions

based on finite differences, FE finite elements, FV finite volumes, SE spectral elements, DV discrete vortices; LB is the

lattice Boltzmann method; FS is a combined finite differences/spectral approximation. For variables, co means a

solution based on streamfunction c and vorticity o whereas PV means primitive variables (velocity components u

and v). The total number of grid or nodal points is denoted N and it represents the most refined case. For SE-methods

using high-order polynomials representation within each spectral element, N has been estimated as k � p2 where k is the

number of spectral elements and p is the polynomial order.

Considering the upstream boundary, the standard procedure is to apply a uniform free stream condition (u ¼ U ;
v ¼ w ¼ 0). This means that Xu=d cannot be chosen too small. In Sohankar et al. (1995), for 2-D flow around a square-

section cylinder, the necessary value for obtaining independent results on r.m.s. lift is Xu=dE10 (Re ¼ 100).

On the necessary lateral dimension parameter H=d it has to be emphasized that this parameter, apart from Reynolds

number, also is dependent on the domain type and the applied boundary conditions. For polar grids and unless special

efforts are put on employing physically sound far-field boundary conditions on the upstream and downstream arcs, it

seems that the outer boundary limit, for laminar shedding conditions, has to be placed at least 30 diameters from the

cylinder center (H=d > 60), e.g., see Rosenfeld (1994), Beaudan and Moin (1994) and Kravchenko and Moin (1998).
For domains of the R- and C-type there will be a true blockage effect when the cross-stream velocity component (v) is

set to zero at lateral boundaries (for such cases H=d in Table 5 has been underlined, except for Anagnostopoulos (1994)

where results have been adjusted for blockage). In Tezduyar and Shih (1991) the effect of changing the lateral boundary

conditions from a symmetry condition, simulating ‘‘frictionless’’ confining walls (@u=@y ¼ 0; v ¼ 0) to a tow tank, free-

stream condition (u ¼ U ; v ¼ 0) is investigated for Re ¼ 100: On r.m.s. lift they report a negligible influence with
H=d ¼ 16: Behr et al. (1995) present a study on the influence of H=d for Xu=d ¼ 8 and Xd=d ¼ 22:5 (rectangular
domain, Re ¼ 100). On r.m.s. lift, using symmetry conditions, it is indicated that H=d > 24 is needed to obtain
independent results. Barkley and Henderson (1996), using a rectangular domain with tow tank conditions, find

H=dX44 to be necessary for independent global results (Re ¼ 190). Posdziech and Grundmann (2000) use a C-domain

with H ¼ 2� Xu; Xd=d ¼ 50 and tow tank conditions, and they find, for Re ¼ 200; after successive domain extensions
combined with systematic resolution tests, that H=dX80 (approx.) is needed to obtain r.m.s. lift within the percentage

level.

The required downstream distance Xd=d is very much dependent on the applied outlet boundary condition. In Behr

et al. (1991) both a Neumann and a traction-free condition (Tezduyar and Shih, 1991) is tested for Xd=d ¼ 2:5� 25
(H=d ¼ 16; Xu=d ¼ 8). With the Neumann condition the necessary distance is Xd=dE20; whereas for the more physical
traction-free condition the critical distance decreases to Xd=dE10: On the necessary downstream distance Xd=d the

convective outlet condition (Lilek et al., 1997; Baek and Sung, 1998; Park et al., 1998; Kravchenko and Moin, 1998)

seems to perform in a similar manner as the traction-free condition; see also Sohankar et al. (1998).

For a specified calculation domain, even when using an efficient numerical method, it is necessary to carry out grid

refinements. However, in many cases and for reasons of computational cost, it has not been fully demonstrated that

solutions are actually grid-independent. One extensive study on refinement tests is by Rosenfeld (1994). Here a polar

grid with H=d ¼ 61 is tested for convergence at Re ¼ 200 (Table 5). On the outer boundary a uniform flow is

prescribed, except in the wake region where Neumann-type boundary conditions are specified. The number of time

steps per shedding period is 800. The solutions are formally second order in space, demonstrated by successive grid

refinements. By extrapolating to zero mesh sizes a lift amplitude of 0.676 is reported (CL0 ¼ 0:478). In the study of
Posdziech and Grundmann (2000) the limiting lift amplitude for Re ¼ 200 is 0.669 (H=d ¼ 240; Xu=d ¼ 120; Xd=d ¼
50; k ¼ 186; p ¼ 10). For further information on the effects of spatial resolution, effective grid clustering, grid

refinements, etc. the reader is referred to specific references in Tables 5 and 6.

In 3-D simulations for Reynolds numbers with intrinsic 3-D flow, Re > 190 approximately, the relative spanwise
dimension, Lz=d; becomes a most important parameter, see Table 6. As pointed out in Henderson (1997), Lz=d (using

periodic spanwise boundary conditions) cannot be compared directly with aspect ratio c=d in experiments. Lift

fluctuations with inherent 3-D flow may also have a complex time dependency, the nondimensional integration time for

taking out the r.m.s. lift then becomes a parameter of some importance. Recent studies, e.g. Henderson (1997) and Ma

et al. (2000), indicate a relatively strong influence of Lz=d : In Henderson (1997), for Re ¼ 103; see also Henderson and
Karniadakis (1995), a change from Lz=d ¼ 6:3 to 25 resulted in a completely different appearance of the lift signal. The
signal for Lz=d ¼ 25 is strongly modulated in amplitude with occasional instances where the lift amplitude falls almost

to zero. In the smaller domain, no such events are found. R.m.s. lift coefficients are not reported, due to transients and

limitations in the simulation time period for each Lz=d : However, it is indicated from the lift-signal appearance for

Lz=d ¼ 25 that at least 100 mean shedding periods are needed to obtain reliable statistics. It is not possible, from
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reported 3-D simulation studies so far, to provide any detailed guideline on the necessary spanwise length to effectively

capture all significant flow features relevant for the fluctuating lift; see also Section 6.3.3.
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